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COMPARISON OF TEXTURE ANALYSIS TECHNIQUES
IN BOTH FREQUENCY AND SPATIAL DOMAINS
FOR CLOUD FEATURE EXTRACTION

Nahid Khazenie'?

'University Corporation for Atmospheric Researcis,
Boulder, CO 80301

Kim Richardson?

2Naval Research Lahoratory, Monterey, CA 93943.5006

ABSTRACT

Idemtification of cloud types through cloud classification using satellite observations is yet to produce consistent
and dependable results. Cloud types are too varied in their geophysical parameters, as measured by satellite
remote sensing instruments, to provide for a direct accurate classification. To aid in classification, texture
measures are additionally employed. These measures characterize local spectral variations in images. They are
widely used for image segmentation, classification, and edge detcction. Numerous methods have been developed
1o extract textural features from an image on the basis of spatial ana spectral properties of the image. In our effort,
several of these methods are stdied for their applicability in cloud classification and cloud feaiure identification.
The examined texture metho is include a) spatial gray-level co-occurrence matrices, b) gray-level difference vector
method, and ¢) a class of filtzrs known as Gabor tansforms. Methods a) and b) are spatial and staustical while
method ¢) is in the frequency domain. A series of comparative tests have been performed applying these methods
1o NOAA-AVHRR satellite duta. A discussion as o the suitability of these texture methods for cloud classification
concludes this study.

Key Words: texture analysis, cloud classification, Gabor transforms, spatial gray-ievel co-owcurrence matrices,

gray-level difference vector (GLDV), NOAA-AVHRR.

INTRODUCTION

Identification of cloud types by automated cloud classifiers,
which operate on a pixel by pixel basis, has yet (o show
dependable and accurate results. Clouds have geophysical
parameters which are too inconsistent, as measured by satellite
remotie seasing instruments, to provide for a direct accurate
classification. No method developed to date provides a
reliable spectral signature which would uniquely identify 2
specific cloud type anywhere on the Earth globe during any
season. Cloud types vary in their spectral response at different
latitudinal locations and at different times of the year. These
variations complicate methods required for cloud type
identification using remote sensing techniques.

Surveying the various available statistical, structural, and
frequency domain techniques applied to cloud classification, it
appears that there are not enough parametrization vectors to
uniquely separate any one cloud type. For this reason, texture
analysis methods are drawn upon in addition to aid in this
problem. The use of texture parameters has been reported on
extensively in recent literature (Wechsler, 1980). Texture
techniques used in our study include a) spatial gray-level co-
occurrence matrices. b} gray-level difference vector (GLDV)
method, and ¢) a class of filters known as Gabor transforms.
Each of these approaches has unique merit for providing
additional information about cloud masses within a scene.
These unique differences are the focus in this study.

Images in this case study are composites of Advanced Very
High Resolution Radinmeter (AVHRR) channe! one and
channel four, Pixel by pixel classifications of cloud types.
based on the spectral and spatial responses from these
channels, are enhanced with results from the various texture
analysis algorithms. Resuits of the classifications from the
combined techniques are compared and discussed.

DATA

An image from the Gulf of Alaska was chosen for this work.
This region was selected due 1o its high latitude which presents
challenging solar zenith angles. It also provides snow within
the scene which tests snow and cloud separation capabilities of
the candidate methods. Furthermore, the general
meteorological activity within this region is high thereby
presenting a continuous varying source of frontal cloud
masses.

The scene selected for presentation is one of eight images used
in this study. Itis an AVHRR image from [5 October 1988,
19Z. A full resolution (1.1 km per pixel) sector of 1024 by
1024 ten-bit pixels was extracted from the original 2048 by
2048 data set.

The channel one and channel four radiance images are shown
in Figures 1 and 2. The channel one image 15 histogram-
equalized for purposes of display. The channel four image 1s
inverted so as to represent clouds in lighter gray shades.

The large band of clouds in the extreme right of the image is a
frontal cloud mass that has previously moved through the area.
This cloud mass is characterized by high thick cirrus over
cnmulus. These clouds are brightened by their height as well
as by the low sun angle which is characteristic for this
northern lautude.

In the lower central portion of the image are well defined cloud
streets.  They are trailed by open cell stratocumulus and
altostratus that extend o the left center of the image. The
mixed layered cloud mass in the lower left portion of the image
represents stratus and altostratus with a cover of thick cirrus.
Some closed cell stratocumulus are at the bottom of the image
between the stratus and frontal clouds.




Snow can be seen in the upper central porton of the image.
Typically, snow will be observed 10 have a dendritic-like
structure which distinguishes it from cloud masses.

TEXTURAL METHODS

Texture is a term used to characierize the suriace of a given
object It can also be applicd to an image of 2 phenamenon. It
is undoubtedly one of the main features drawn upon in image
processing and pattern recognition. Texture analysis plays a
fundamental role in classifying objects and outlining
significant regions of a given gray level imape (Wechsler,
1980). Despile its ubiquity in image daw, though, texture
lacks a precise definition. Some definitions characterize
texture as visual images which possess some stochastic
structure. Other definitions describe texture as an attribute
generated by a local periodic pattern. Whatever the definition,
most algorithms which derive texture from an image fall into
the categories of either staustical or frequency domain. A brief
description of the three texture methods of interest follows.

Figure 1. AVHRR channel 1 ten-bit radiance
values, histogram equalized for display.

Figure 2. AVHRR channel 4 ten-bit radiance
valucs. inverted for display.

Statistical Methods

The two most commonly used stausucal texture methods are
the a) gray-level difference vector (GLDV) method (Welch et
al, 1990, Khazenie and Richurdson, 1991), and the b) co-
occurrence matnx method (Haralick. 1973). Qur current siudy
draws upon both of these methods. Both methads exwract a set
of statistical parameters from a given image. Some of the
commonly extracted wxture parameters are inerta, correlation,
homogeneity, entropy, energy, vanunce. skewness. and
kurtosis. These paramuters are then used as the input features
10 a classifier.

Texture measures are derived commonly from statistical
parameters of first or second order. The GLDV method
estimates the probability density funcuon for differences aken
between image {uncuon values at tocauons spaced @ pixels
apart and at an angle 8. The resulting texture measures are
bused on this first order statisisc. The spatial co-accurrence
matnx method, on the other hand, esumates the joint gray level
distribution for two gray levels locaied at a distance d and atan
angle 8. The texture measures denved by the co-occurrenc
matnia sactiod are based on this second order statistic.

The co-occurrence matrix method is used in this study to
denve texture values of entropy. Lomogeneity, energy (similar
to the GLDV angular sccond moment), and correlation. These
four parameters were calculated for the radiances of each of the
two channels, AVHRR channel one and channel four, for a
total of eight texture values. Each texture vatue was processed
using three different convolution sizes. The n by n
convolution sizes are n = 3. 9, and 16. In addiuon, the
search angle for each of the convolutions was varied to
determine whether or not the dernived textures possess any

angular dependence. The angle was st 1o 8 = 0.° 457 90.°

and 135.° Scarch angle dependence is expected only when
the surface resolution is much smaller than the 1.1 km surface
resolution of the AVHRR instrument and indeed, as discussed
later, no angular dependence was identified using the co-
occurrence matrix method and the given image data.

The GLDV technique was similarly applied. The same texture
values as for the co-occurrence matrix methad were calculated
The calculations were performed on the same channel one and
channel four radiance values, but only for a single search
angle, 8 = 0. The search angle non-dependence had already
been established from working with the co-occurrence matrix
method. Seven convolution sizes were chosen to derive the
texture values of entropy, local homogeneity, and angular
second moment. The convelution sizes were n=3, 5,9,
11, 16, 32, and 64. From a previous study (Khazenie and
Richardson, 1991) the three sizes of n = 3. 16, and 64
provided the best statistical representation of the data for use in
cloud classification. This finding was re-established in the
current work.

Frequency Domain Methods

Spatial granularity and repetitiveness is one of the
characteristic aspects of texture. Both can be quantified by
looking at the frequency content of an image. It is therefore
reasonable 1o expect that ransform technigues are suntable for
extracting texture information from images,

The Fourier transform analysis method (Leadans et al., 197
is a procedure which works in the frequency domam, Ts. by
far, the most used transform method. Image features. such 35
spectral rings or edges, are denved from the image power
spectrum by this technigue.

Related to the Fourder transform are functions first introduced
by Gahor (Gabor, 1946). These funcuons have been extended

—

Y N el

~

&

14
To
U




p-=

to two dimernsions {(Daugman, 1980) resulting in what is
known as the two-dinensional (2-D) Gabor filters.

One of the unique properties of Gabor filters is their ability 10
discriminate textural features in a way similar to that of human
vision (Fogel et al., 1989). Another important property is
their achievement of the theoretical lower bound of joint
uncertainty in the two dimensions of visual space and spatial
frequency variables (Bovik et al., 1990), Additonal

-advantages of Gabor transforms include their wnable spatial

orientaton, radial frequency bandwidths, and wnable center
frequencies.

The 2-D Gabor filter is a harmonic oscillator, a sinusoidal
plane wave within a Gaussian envelope. The convolution
version of the complex 2-D Gabor function has the following
general form.

G(xv y ‘ W, 6! ¢' x) Y) =

Ly oxp [HL(x:X% + -1)2])
( 2::0") P 20? ]
sin(W(xcos8 - ysinB)+@) 1)

In equation (1), the Gaussian width is . the filter orieniation

is 8, the frequency is W, and the phase shift 1s ¢. Variables
X and Y define the center of the filter.

The Gabor function, equation (1), can be represented as a
complex function having a real and an imaginary component,
Gy and Gy, respectively.

Gl(x)yl‘vp 9)¢=01 x’ Y)
Gz(x»y|W, 8’(P=ZE: Xv Y)

Functions Gy and G, are, respectively, even and odd

symmetric along the preferred orientation direction 8. The
results of convoluting Gy and G, with any two-dimensional

function are identical except for a spectral shift of /2 along
the direction 6.

Given an image I(x, y). its Gabor transformation for a given

filter size n with orientation angle 6 and frequency W is given
by the following equation.

SUXY | W,8) = {G; * Ix,y)]? + [G2 * I(xy)]*

The Gabor filter described by equation (1) was applied to the
AVHRR test images' channel one and channel four radiances.

The response was evaluated for filters with 8 = 0.° 45.°

90.° and 135.° The frequency W was set to 2xf/(n/2)
where £ = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. The tested
filter sizes n were 9, 17, 33, and 65. . The best results for
cloud typing from the four convolutions was for n = 17.

RESULTS

The 1024 by 1024 en-bit radiance data from channels one
and four was used as input to the various texture algorithms.
The texture output was then resized back to the full 1024 by
1024 resolution and added, as supplementary channels, to the
radiance data. The resulting N channel data set was classiticd
using a standard staustical unsupervised classitier.

1011

Co-occurrence Matrix

The texture results from the co-occurrence matnx algorithm
were first classified alone for each of the convolution sizes and
search angles. Figure 3 is the result of this ¢lassification for
an n by n convolution size where n = 3 and for a search angie

8 = 45.° Th.s represents the best result for all of the
classifications from the co-occurrence matnx algorithm.

Figure 3. Texure values from the co-occurrence
matrix algorithm, classified and scaled
up for display.

It is clear from Figure 3 that the texture values alone do not
represent cloud types with any accuracy. Figure 3 shows nine
classes, but none identify any of the cloud types uniquely.
The classified images are extremely noisy and at best represent
features within the cloud masses rather than the cloud types
themselves. There is, however, one reasonably accurate
feature which resulted from this classification. For the lowest
convolution size, at all search angles. the clear vs. cloudy
areas are quite disunct.

For convolution sizes of n = 9 and 16, for all search angles.
the classification separates the clear areas trom the cloudy ones
with success as well. It also produces a smoother
classification. The cloud types, though, are still difficult to
identify.

The classifications were performed twice on the texture resuls
where n =9 and 16. The first classification was performed
on all of the texture values denved. The second classification
was performed on the same values except for the correlation
parameter. The results of the cloud type classification neither
improved nor degraded. Therefore it scems thai the correlation
parameter does not contribute to the information needed for
cloud typing.

In all cases of classifying only the co-occurrence matrix exture
results, the thick cirrus was identifiable as a homogeneous
feature, yet it was assigned the same class as portions of the
open cell stratocumulus. Also in all cases, the snow was not
separated from the clouds. The snow was assigned the same
class as the stratus and altostratus clouds.

It was concluded at this point that classifying textore values
alone does not provide safficient results for identifying cloud
types. The next step then was to provide more informauon to
the classifier. The eight texture values were combined with the
two AVHRR channel radiances (channel one and four) and
classification was performed on the resulting ten channels ot
data.




The texture values for convelution size of n = 9 were resized
to the full 1024 by 1024 resolution, equal to that of the
channel radiances, merged with the channel radiances, and the
resulting data set was classified. The output is shown in
Figure 4.

The search angle was varied as before, but the results from the
classifier showed virtually no differences for unequal angles.
The results for varied search nnples were compared by
calculating difference images. Only minor vanations were
noted in some of the mixed layer cloud types amounting for
less than 1% difference over the entire image. From this it
was concluded that the process is not dependent on search

angle and all further comparisons were made setting 8 = 0.°

Figure 4. Combination of AVHRR channel I,
channel 4, and texture values from the
co-occurrence matrix algorithm, clas-
sified.

The fromal cloud mass at the extreme right of the image in
Figure 4 is represented by four distinct classes. The thick
cirrus, the altocumulus, the cumulus, and the lower level
stratocumnulus each appear as distinct cloud types. They are
affected by the sun angle therchy giving the cirrus over the
frontal cloud mass a different class than the cirrus over the
straws in the Jower left portion of the image.

The classes representing the stratus clouds provide more
separation of cloud types than a human photointerperter would
give. Should the goal be 1o duplicate human performance, one
can casily combine some of the statistical classes. However,
our goal was 10 obtain parameter vectors for performing
unsupervised cloud classifications. no matier how many
vectors there may be, as long as the distinct cloud types can be
scparated from each another. That goal was achieved.

Gray Level Difference Vector

The texture results from the gray level difference vecior
(GLDV) algarithm were first classificd alone, identically as for
the co-occurrence matrix. Similarly. the classification resulis
from these texture values alone do not provide cloud type
information directly. The results are essentially identical to
those shown in Figure 3 for the co-occurrence matrix. The
textures values, when classified, identity edges between
features within the image well, but the features are various
areas within the cloud type rather than the cloud type nsell.

As with the co-occurtence matrix method, the GLDV performs
very well at identifying cloud versus no cloud arcas within the
scene. Jtis not know at this time., however. if this capahility

can be extended easily 1o all AVHRR 1mages. With more
study this may indeed prove 1o be the case.  Simple
thresholding of the texture valucs may be all that 15 required,
Results from a previous study (Khazenie and Richardson,
1991) supporn this conjecture.

As with the co-occurrence matrix output. the wxiures derived
by the GLDV were then combined with the channel one and
channel four radiances, The resulting eight channels were
classified and the outcome is shown in Figure 5. Again, the
resuits are essentially identical to those from the co-occurrence
matrix method (Figure 4) in their ability to type clouds. Sun
angle remains a problem within the frontal cloud region at the
extreme right of the image. However, the mixed layer clouds
in the lower feft show the same successful level of cloud type
separation as with the co-occurrence matrix method.

Figure 5. Combination of AVHRR channel 1,
channel 4, and texture values from the
GLDV algorithm, classified.

Convolution size plays a role in the abdility to type clouds. For
n > 16 the algorithm is able 1o identify the presence of
clouds. Tt is also able to determine that the texture in the
region is unique. However, it does not provide enough
information to the classifier to scparate cloud types. Although
the statistical significance is in favor of the higher convoluuon
sizes, it is the lower convolution sizes that provide the textural
significance to the classifier for cloud type identification.

Gabor Filters

Figure 6 presents the result of classifying the test image
channe! onc and channe! four radiances combined with the

Gabor filter output where n = 17 and phase angle ¢ = 0. Of
the available 2048 by 2048 datwa, the same 1024 by 1024
scene was originally acquired as for the statistical methods.
However, computer resources available for the study of Gabor
filters could digest no mare than 512 by 512 images.
Therefore, only the lower left quarter of cach 1024 by 1024
scene was analyzed. One such quarter is shown in Figure 6.

The thick cirrus over the stratus is well separated. This is a
great improvement over the classification of texture values
from the Gabor filter alone. Indeed the classifications of the
combined image. radiances and textures shown in Figure 6,
are much casier to label than are either of the classificatons
based on texture only.

Convolution sizes n > 17 do not perform well for a wide
variety of cloud types within a scene. This follows along with
the same findings as {or the statstical texwural methods.
Impornant textural atributes in the cloud mass are Tost when
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higher convolution sizes are used. With such convolution
sizes, the textural analysis shows the dominant texture over
each cloud mass, but does not sufficiently indicate
characteristic features of that cloud mass thereby missing the
classification of the cloud type. In particular, the open cell
stratocumnulus and altostratus within the image did not separate
out at the higher convolution Sizes.

Figure 6. Combination of AVHRR channel 1,
channel 4, and texture values from the
Gabor filter, classified. The results
shown cover only the lower left quarter
of the test image.

While it has not been tested in this study directly, it is
conjectured that the approach using the Gabor filter will be less
sensitive to latitude variances and scasonal changes compared
ta the two statistical techniques. The Gabor filter is a tunahle
alecrithm, With proper adjustment of control parameters it
should be possible to desensitize the tilier to tocal effects, such
as latitude changes and seasonal etfects, while retaining the
ability to extract the required physical response which uniquely
represents each cloud type.

Inter-comparisons

The results from classifying only the output of the two
statistical textural methods, the co-occurrence matrix and the
GLDYV, are almost exactly alike. This is reasonable since the
texture measures calculated by hoth of these algorirthms were
the same. One should expect the same results even though
they were arrived at by different means, The GLDV is based
on {1rst order statistics while the co-occurrence matrix method
is based on second order statistics. It can therefore be
concluded that, given our test images, the extra complexity of
the second order statistics is not necessary for arriving at
satisfaciory results.

It is also noteworthy that the results from the two statistical
methods are virtually identical cven though different
convolution sizes were used. This suggests that the feawres.,
which distinguish cloud types, are fairly coarse. It also
suggests a lack of fine features which would distract a methad
that uses a small convoluuon size.

The output of the Gabor filter has different characteristics
compared to the output of the c¢o-occurrence matrix and
GLDV, yet the ability to separate ¢loud types is very similar
tor all three methods. The resolution of the Gabor filter output
is lower, seventecn pixels versus nine for the co-occurrence
matrix and three for the GLDV. The classification results are
greatly intluenced by this resolution difference. This is
obvious by comparing the pixel size in Figure 6 with Figure 4,
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In Figure 6 the boundary of the thick cirrus over the stratus
has been smoothed  This 1s also true for the stratus cloud
types. The separation of multilayered clouds is similar for ail
three methods.

The computer processing tme required for the Gabor tifter
method proved much less than cither of the two statistical
methods {co-occurrence matrix or GLDV). Processing a full
1024 by 1024 scepe using the Gabor filter 10k
approximately one minute on a SUN SparcStation I, The
stauistical methods required approximately ten minutes cach for
the same image.

CONCLUSION

Classification of cloud types using spectral and denved
textural parameter vectors alone has not been completely
successtul. Additional information about texture in the image
provides more input to a cloud classifier. Such an addition
shows considerable improvement over cloud classiticuion
based only on spectral information. Despite the marked
improvement, however, it does not yet appear that the additon
of exture information provides all of the necessary parametcrs
required to successfully classify and completely label cloud
types. Nevertheless, results from this study indicate that
Gabor filters applied w the spectral data set, and used in
canjunction with the spectral data for classiticauon. extract
cloud types better and faster than the other technques
explored.
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Work has also continued into special case GP algorithms: Integer, Zero—-One,
Fuzzy, Interactive and Chance~Constrained. A breakdown of publications in
these areas is given in Romero [37]. In total he lists 355 papers dealing with
GP applications in 26 distinct areas.

Research has been done to apply other Multi-Criteria and Management Sci-
ence techniques to Goal Programming. These include interactive multi-criteria
methods {38], ‘Delphi’ techniques [39, 40], Saaty’s {41] analytical hierarchy ap-
proach (36, 23, 39], and resource planning and management systems(RPMS)
networks [42]. Recently papers have been published dealing with some of the
perceived ‘errors’ in G.P {37, 40, 43]. and explaining how these can be avoided
by the correct setting of weights, goals, priority levels etc.

The remainder of the paper will be divided into four sections. Section 2
will deal with lexicographic(pre-emptive) GP, section 3 with weighted GP(non
pre-emptive), section 4 with the connection between utility functions and GP.
finally section 5 will draw conclusions as to the current direction of GP and the
direction of the authors’ future research.

2 Lexicographic GP

Of the 355 papers mentioned by Romero [37], 226 use the concept of Lexico-
graphic GP(LGP), which requires the pre-emptive ordering of priority levels.
The standard LGP model can be algebraically represented as:

Lez min a = (g1(n, p), g2(n, p), ......., gk (n, p))

subject to,
filx)+ni—pi=b i=1..m
This model has K priority levels, and m objectives. a is an ordered vector of
these K priority ovcls.
A standard ‘g’ (within priority level) function is given by:

gr(n,p) = ag,my + oo + Qi m + B, Pt + oo + B Pm

This paper will summarize the development of algorithms to soive the LGP
model, work on the multi-dimensional dual {30, 44|, and current thinking on
methods of priority ranking and weighting within the priority levels. Some
applications of LGP will be commented on, in an effort to outline which types
of problem are suitable for an LGP approach, and which are better solved using
other techniques.

3 Weighted GP

Weighted (or non-pre-emptive) GP(WGP) requires no pre-emptive ordering of
the objective functions. Instead all the different deviations are placed in a single
priority level objective with different weights to represent their importance.
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Algebraically, a WGP has the following structure:

x
Min a = "(ain; + Bip:)
iz}
Subject to,
filx)+n; —p;=b; i=1..m

x € C,

Where C, is an optional constraint set. Of interest here are the problems
caused by incommensurability, i.e. objective functions being measured in differ-
ent units, and techniques used to overcome this. As in the LGP case, application
areas will be outlined.

4 Utility Functions

The third section will deal with the connections between utility functions and
the different types of GP. It will explore the literature on the problems caused in
reconciling LGP and utility function theory. It will also examine recencly devel-
oped techniques to model GP’s more closely around their underlying objective
functions [45].

5 Summary and Conclusions

The finai section will draw conculsious as to the scope and limitatiors of GP
and highlight areas in which the authors intend to conduct further research.
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MULTI-STAGE ECONOMIC LOT SCHEDULING PROBLEM

Aysegli Toker Terzi and Nesim Erkip
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06831, Ankara, Turkey

The Economic Lot Scheduling Problem (ELSP) Is to economically
schedule lots of one or more products on g single machine.
Demand Is constant, backiogging is not aliowed ond the planning
horzon & infinite. The problem is to minimize totat operating cost per
unit time which is comprised of setup costs and inventory costs.
Setup costs are incurred whenever ¢ production for a lot is begun
and inventory canying costs can be defined os the time value of

money tied up in Inventory.

An extension to single machine/tacility problem is the study of
environments where products are manufactured through severat
operations. Such systems are, in general, called as multi-stage
production systems. Multk-stage production systems received o ot of
academic attention in recent years focussing on the control of work-
in-process Iinventory and Its functional reiationship to the
manufacturng cycle time. It is a very well known fact by now., the
larger the prodkuction lot size, the longer the manufacturing cycle,
which In tum, increases the work-in-process inventory. There exists
vast literature modelling this relationship to vorying degrees in
different models for different system configurations.
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The Multi-stage Economic Lot Scheduling Problem (MS-ELSP) brings
together two important problem characteristics inherent to mutti-tem
and mutti-stage problems. In a mutti-tem problem, the main kssue |s
that of creating scheduies which avoids the interference that s iikeiy
to occur when two or more products compete for the same facility,
We will refer to this os the ‘feasibility Issue’. in a muitl-stage
senvironment, the production should be synchronized so thar
concumrent production of the some iot Is not possible In the
consecutive stoges. This characternstic leads 1o the definition ot wori:
in-process inventory which. in tact, s a tool for the synchronzation ot
production among stages. Thus, in multi-stage problems. creating
schedules owing this property will be referred to as "consistency
Issue®. This study addresses the Multi-stage Economic Lot Scheduling
Problem with the objective of determining feasibie and consistent
schedules which resutt from the conventional tradeoff between setup
costs and Inventory holding costs comprtising the total cost of ¢

schedue.

in this resecrch, we restrict the study of MS-ELSP to serial systems
where there are m products to be manufactured through n distinct
stages. We first analyze the two product - two stage protilem. In
order to guarantee feasibiiity, common cycle solutions in which the
possible values of cycle times for all fems are constralned to a singie
cycle time value. T. are sought for. In a two-stage producticn
system, production of a lot on the second stage connot begin untii
its production on the first stage is completed. Therefore, production
between stages should be synchronzed so that we end up with

consistent schedules. To ensure consistency. we define a censtraint
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for each product which also provide information about the work-in-

orocess inventordes.

Another important p_olnt In this study Is the presence of nonnegative
setup times. Setup times mean a koss In the productive capactty and
their effect on lot sizes is the most significant when the capaocity
utiization is high. On the other hand. work-in-process inventores
tend to increase with increasing capacity utlizations. Therefore.
ignorance of setup times will resutt in overestimated ot sizes due to

underestimation of work-in-process inventories.

The mathematical programming formulation of this problem is
deveioped where the objective function & noniinear with a linear set
of constraints. Setting the cycle time to a fixed value, we first
inearize the objective function. By using the dual probiem and
compiementary siackness, the optimal solution of this problem and
thus the optimal cycle time for the two product - two stage problem
are obtained. Besldes. we have the exact terms for the work-in-
process inventories (queueing inventories: inventory that bitt up on
the previous stage if the successor stage Is busy with processing the
other products) since they can be expressed explicitly as analytical
functions of the cycle time. Then, we generalze our resutt to muiti-
product case in a two stage system which constitutes a basis for the
analysis of the m-p&;oduct, n-stage economic lot scheduling

nroblem.

Key words: Economic Lot Scheduling Problem, mutti-stoge
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. t'us paper we present computational experience with a primal-ual interior point for smooth oonvex
orogramming problems of the type
min 7z
s.L. (1)
9iz) <0,

whaie ¢ £ R™ and g : R® — R™ 1s a vector-valued function. We assume that each component g, is
aonvex Let s € R™, be the vector of slack variables. The inequality constraints in (1) are replaced by

gleYd =90, s>0
Given 8 parzmeter u » U, we associste with (1) the barrier prooiem
il
mn Tx—-pa3 Ins,
1wzl
st 2}
e asoume that Slater's condition holds:
assumption 0.1 There s an x € R® such that g(z} < 0.
Ye also assume
icsumption 0.2 The set {= : 4.z} €0 and ¢” z < d} s bounded for cii 6.

Under these 2ssumpiions Problem (2) has a soiution. The necessary and sufficient conditions for opti-
mality, nameiy the Karush-Kuhn-Tucker eguations. or KKT equations. are

Ve—ue = 0 (3}
giz)+s = 0 (4)
3g T
(32) v+e = o )

with s >0 and y > 0. Here

g _ [deilz)
61: - 3:,
is the Jacobian matrix of g and y € R™ is a vector of dual variables.
Let
F:R"xR™"xR"—<R™xR™xR"
be a muiti-valued furction defined by

F, Ys—pe
Fzy=(F |={ % 1.
Fy %‘k
with z == {y, s, z}. F also depends on the parameter u > 0. With this notation, the KKT system is simply
Fl:)=0.

We also introduce the Lagrangean

Liyiz,8) = Tz +yT(g(z) + 9). (6)
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The KKT system (3) - {5) can be rewritten as

aL aL

Ye-pe=0 —=0 and — =0.
dx

Following usual terminology, & point z = (y,s,z) is interior if y > 0 and 2 > 0. We do not require it w0
be primal or dual feasible. At such a point, we define the Newton direction dz = (dy, ds, dz} by

aF

—§—dz + F =0. )
Note that
S Y Q
aF _ FL L
3z Byds Oyox
8L 7L
8zdy z?
with ,
L 3L dg IL ag\T =L D,
Fyas =" Gyaz " 3z Gxdy (é;/ : ‘?;;”'?9'?

Since the g; are convex, &% is positive semi-definite. Let us make the further assumption

Assumption 0.3 Let y > 0 and 3 > 0. The matnz

2
8 L 3L 9L, o L
8 By dyax
is positive definite.
A sufficient condition for that is:
6‘2[1 = 629“
3 = LV
=1

is positive definite, or g{- has full row rank, or both.

Under Assumption 0.3, %f is regular at any interior point. Thus

ar\™!
dl:—'*('g:) F.

Let us explicitly write and solve the system (7) in dy, ds and dx:

Sdy+Yds+F, = 0
8L
ds+3—y—é—dz+F = 0
2 2
aLdy+aLd.z+F¢ = 0.

dxdy

In these expressions we used the fact that 38‘%; = I




586

The algorithm goes as follows: Given an interior, but not necessarily feasible, point, we compute the
search direction dz associated with u. Then & step is taken along that direction such that the intenor
property is maintained. Namely, let & := max{a : y+ody > 0,5 +ads >0} and let 0 < v < 1. Then
the next iterate is given by

T = z+vyodz
) = s+ vyads
y = y+7ady.

Te choice of i is adaptive. For “normal” steps, we take u = ’fn—} If miny;s; < 71;—‘, the vector Vs is
considered sxcessively unbalanced and we take y = '% This step is named “centering”.

We tested our aigorithm on a sample of medium size random problems. We primarily studied the effect
of varying the size of the problems. We observed that the number of iterations increases slowly with the
number of constraints and, surprisingly enough, it decreases with the number of free variables in the case
of quadratically constrained problems.

We analyzed the influence of centering and showed it to be positive. We also siudied alternative strategies
for the step size. [t turns out that taking a fixed fraction of the maximal step size works well in practice.
Moreover the fraction can be extremely close to I without any negative effect on the performance of the
method. Finally, we looked at different choices for the starting point.

We applied this algorithm to linear programming problems. The algorithm behaves a bit differentiy than
with quadratic constraints. The iteration count increases both with the number of constraints and the
number of free variabies. For the former the increase is slower. The figures are reasonable.
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I INTRODUCTION

Mathematical programming and theory of scheduling have a lot of optirniza-
tion problems which are NP-hard in spite of their very simple structure. Thus these
problems are considered to be difficult to solve. But some of them are easy in the
sense that there are straightforward ways to generate feasible solutions of them, e.g.
the knapsack problem, the TSP problem and many scheduling problems.

One of them is the scheduling of identical parallel machines where the max-
imal completion time has to be minimized. This problem is the topic of this ex-
perimental study. It has several heuristics. The two basic ones are Graham'’s list
scheduling and the multi-fit algorithm. There are known upper bounds for the
relative accuracy of the heuristic solutions provided by these methods. The two
algorithins have quite different strategies. This is the reason that some problems
worst from the point of view of list scheduling can be solved exactly by the multi-fit
algorithm and vice versa. This gives the question that how bad accuracy can have
the better of the list scheduling and the multi-fit solutions. This was the initial ques-
tion of this research. Another algorithm called intercl. .nging method has been also
investigated. The research made necessary to sharpen the well-known lower bound
of the optimal value of the objective function, too.

2 THE SCHEDULING PROBLEM

In the classical problem of the scheduling of parallel machines n jobs have
to be distributed amoug m identical machines in such a way that the makespan is
minimal.

The whole operation starts at time 0. The machine independent processing
times are denoted by p;(; = 1,...,n) which are positive integers. It is easy to see
that there is at least one optimal solution such that the machines start to work at
t=0 and are working without any idle time until all jobs assigned to them have been
finished.

Let C; be the completion time of job j. The maximal completion time, i.e.
max{C;: j = 1,...,n}, is denoted by C*.

Theorem 1 [Graham 69], [Coffman et al. 78] In any problem

max{ - 2%, Pj,méX{Pj 1j=1,..,n}} (
e < 1}

max{Z 7", p;ymax{p; : j = 1,...,n}}.0
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The interval in which the optimal value must lie is denoted by {L, U], i.e.
1 & ) p
L = [max( S p, max(p, -5 = 1,...n})] 2)
=1

and

2 n
/= = )
{ [max{ ~ };p, ,max{p, : J

I,....n}}. {3)

Both the list scheduling and the multi-fit algorithm start with the deter-
mination of the nonincreasing order of the processing times. The two algorithms
assign the jobs to machines in that order. Therefore without loss of generality it
may be assumed that

Pr 2P 2 . 2 pn (4}
The rule of the list scheduling is that
every job is assigned to a machine having minimal current load. (LS}

Theorem 2 [Graham 69] Let C(LS) be the value of the solution provided by the list
scheduling. Then

c(Ls) 4 1
c =37 gm* (%)

Theorem 3 [Graham 69] If there is an optimal solution which assigns to each ma-
chine at most 2 jobs, then the solution given by the list scheduling is optimal. C

The multi-fit algorithm consists of two parts. A greedy method is the in-
ternal part and a logarithmic scarch is the external part which organizes the ap-
plications of the greedy method. [or the internal part an upper bound K of the
optimal value is assumed. The greedy method assigns each job to the first machine
intc it fits not exceeding the upper bound K. In the exiernal part a current lower
bound and a current upper bound are assumed and are denoted by Ic and uc. For
the internal part K is chosen as !C—‘Im If the greedy method was able to find a
solution not worst then I, then uc becomes | /(|, otherwise lc = [K]. The process
is repeated until the condition

uc = le

is not satisfied. Notice that it follows from the assumption of the integrality of the
processing times that the number of applications of the greedy method is O{log(U —
L)). Thus the multi-fit algorithm is polynomial.

Theorem 4 [Friesen 84] Let C(MF) be the value of the solution provided by the
multi-fit algorithm. Then

CMF) _

20
< | (6)
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A third heuristic method called interchanging algorithm has been applied
in this research. It makes the following steps starting from any solution. It inter-
changes one job of the most loaded machine with one job of another machine. The
interchange is possible if and only if the maximal completion time is decreased in
this way. Let s and ¢, resp., be indices of the most loaded and the other machines,
resp. The current load of the machines are denoted by L, and L,. Suppose that the
job i of machine s is interchanged with job j. Then the following two conditions
must hold

pi > p, (7)
and
Lo+ p ~p < L. (8)

In the current version if a possible interchange is found then it has been executed.
The order of checking Conditions (7) and (8) is as follows. The jobs of the most
loaded machine are compared with the jobs of another machine taking the other
machines in an increasing load order. The jobs of the two machines are taken in a
decreasing processing time order. One jo of the most loaded machine is compared
with all of the jobs of the other machine. If no possible interchange is found then the
next job of the most loaded machine is taken. The number of comparisons of one
iteration are O(n?). To get a polynomial algorithm the number of interchanges has
been limited by m + 2. In the current version the solution provided by list schedul-
ing is the starting point. This algorithm is one of simplest possible interchanging
methods. In more general a subset of jobs can be interchanged for another subset of
jobs. In that case the complexity of the selection of the two subsets is much higher.

3 IMPROVEMENTS OF THE LOWER BOUND

The randomly generated problems have not been solved with any kind of
enumerative methods. One easy way to prove the optimality of a solution is that
the value of it and the lower bound coincide. Therefore it was important to find
some ways to improve the lower bound.

In (2) only two information are taken into consideration, the average load
and the maximal processing time. The following two sharpening of the lower bound
are based on the fact that what is the number of jobs which must be assigned to
certain machines.

Theorem 5 Assume that ({) holds. Then

c* 2 pn-—(;’ﬂ+l + ..+ p, O (9)

Theorem 6 Assume that ({) holds. Let
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e > 1

r

c* > min{}:’m‘_[%l'ﬂm. > p,'}. Q (10)
y=nsf2l

In some cases there are jobs which are not effecting C*, because their pro-
cessing times are relatively very small. In that cases the following observation is
useful.

Theorem 7 Lei S be any subset of the jobs. Let L> be any lower bound for the
protlem defined by the jobs those in S. Then L® is a lower bound for the original
problem. O

Theorem 8 Let k be any index with 1 < k < n. Assume that: (i) the list scheduling
has assigned until that point exactly k jobs to machines, (i1} none of the machines
has more than lwo jobs, (111) px_y + px-1 + pi 15 al least as great as the current load
of any machine. Then the current mazimal load is a lower bound for the optimal
value of the problem. O

Theorem 9 Let & be a fired inder and

) ,
t, = {j—i J=1....n
Pk

r "- t
;}:)1-7: J mos

4 COMPUTATIONAL EXPERIENCES

Then

The commputational experiences have heen made in three phases. In the first
phase about 500.000 problems Lelonging to different classes have heen generated.
In this phase some observations have been made which modified the objectives of
the research. The seccond phase was the main one in which 1.200.000 problems
have been generated in a wide range of problem classes to find difficult problems.
Further attempts have been made to find more difficult problems in the most hopeful
problem classes.

Definition 1 Let C(LS) and C(MF) and C(IC) and C* be, resp., the value of the
solution provided by the list scheduling and the multi-fit algorithm and the inter-
changing method and of the optimal solution, resp. A particular problem is called
first order difficult if the value

min{C{LS),C(MF)}

11
oL (11)
is high. [t is called second order difficult if the value

min{C(LS),C(I1C),C(MF)}  min{C(IC).C(MF))} (12)

ct .
is high.
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This definition is not correct in a strict mathematical sense, because the
meaning of the word "high” is undefined. This meaning has been determined during
the experiences.

A problem class is determined by the following parameters: m - the number
of machines, n - the number of jobs, p - the maximal possible processing time; the
processing times are generated randomly by the {I, p| integer uniform distribution.

In the experiences the following formulas have been used instead of (11)

and (12)

min{C(LS),C(MF)} "t
L o
and
min{C(IC'.),C(MF)} 14)
7 !

where L is some lower bound of the optimal value of the objective function.
4.1 Observations of the First Phase

In the first phase only the list scheduling and the multi-fit algorithm have
been used.

At the beginning of the experiences L has been chosen as L. Some problems
seemed to be difficult although an optimal solution has been obtained by one of the
methods. In some cases this fact could be proven by one of the improvements of the
lower bound discussed in Section 3.

Some problems had just the opposite behaviour. Here the lower bound
coincided with the optimal value. u many cases this fact could be proven by the
interchanging algorithm. This is the reason that this method had to be volved
into the investigations.

Among the most difficult problems found in this phase there were manv
such that the smallest processing time was relatively great. Therefore in the second
phase of the experiences the generation of the the problems has been modified as
follows. The first thousand problems has been generated as earlier. In the case of
the problems of the second thousand the processing times were increased by I, in
the case of the third thousand by 2, e.t.c. This cannot be applied for all of the
classes, because in some cases if the increase is not less than a certain value, the
problem regardless the generated random numbers becomes trivial.

The problems which seemed to be difficult were belonging to two different
categories. The first one is the set of first order difficult problems. The most difficult
problem in this sense was the following. n = 10, m = 3 and the processing times are
30, 29, 24, 18, 17, 17, 17, 14, 13, 13. The solution provided by the list scheduling
is as follows: M1: 10, 17, 13; M2: 29, 17, 14; M3: 24, 18, 17, 13. The multi-fit
solution is: M1: 30, 29, 13; M2: 24, 18, 17, 13; M3: 17, 17, 14. Both of them have
the value 72. But the optimal solution is the following: M1: 30, 17, 17; M2: 29, 18,
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17, M3: 24, 14, 13, 13. The value of it i1s 64. Since that time Definition 1 has had
the meaning that a problem is first order difficul® if
min{C(LS),C(MF)} S 9
—C 8
The computationally difficult problems belong to the second category. In
the case of such a problem it is difficult either to find the optimal solution or to
prove the optimality of a solution generated by one of the heuristics.

4.2 Experiences of the Main Phase

In the second phase an intensive search has been carried out for difficult
problems. 100.000 problems have been generated in each of the problem classes.
The generated solutions are within 105% and even 101% of the improved lower
vound in the case of a very great part of the problems in each class. These results
are summarized in Table 1.

it turned out that none of the list scheduling and the multi-fit algorithm is
superior to the other one. This is indicated by the numbers of problems such that
the appropriate heuristic solution is within 101%. The number of problem classes
for which a method is superior to the other one is approximately is the same for
both algorithms. The behaviour of both methods are very different in the different
classes. But the "the Letter of list scheduling and multi-fit” seems to be much stable.

n/m/p 101% 101% 105% 105%
LS-MF | IC-MF §{ LS-MF | IC-MF

10/3/15 || 88067 94179 98817 99897
15/3/15 || 95177 99441 99997 99999
10/3/30 73970 55831 97418 99815
15/3/30 | 89662 99002 99999 | 100000
10/3/60 || 45787 69949 54304 99582
15/3/60 || 80167 98599 99996 | 100000
30/3/15 | 99910 | 100000 || 100000 | 100000
3073730 || 99917 [ 100000 || 100000 | 100000
30/3/60 | 99132 { 100000 {f 1006000 | 100000
10/5/15 98244 98245 99043 99044
20/5/15 | 89275 97461 99995 | 100000
60/5/60 i 100000 { 100000 ji 100000 | 100000
3. 1l 966051 | 1043707 |f 1089569 | 1098337
percentage 87.27 94.88 99.05 99.85

Table 1: The numbers of problems having good heuristic solution
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parameters MF LS
1073715 | 87795 | 1318
15/3/15 | 7324 | 93662
T0/3/30 | 73529 | 950
15/3/30 | 12683 | 86078
10/3/60 | 44808 | 1568
T5/3/60 | 23804 | 72245
30/3/15 | 26577 | 99725
30/3/30 | 50626 | 99501
30/3/60 | 42090 | 99132
10/5/15 | 98236 | 97997
20/5/15 3649 | 87973
60/5/60 | 100000 | 99111

Table 2: Comparison of the list scheduling and multi-fit heuristics

The most first order difficult problem which has been found in this phase 1.
the following. n = 10, m = 3 and the processing times are 15, 14. 12, 9, §, 8, 8, 7,
6, 6. The solution provided by the list scheduling is as follows: M1: 15, 8, €, 6; Mz
14, 8, 7; M3: 12, 9, 8. The multi-fit solution is: M1: 15, 14, 6, M2: 12, 9, 3, 6; M3.
8, 8, 7. Both of them have the value 35. But the optimal solution is the following-
M1: 15, 8, 8; M2: 14,9, 8; M3: 12, 7, 6, 6. The value of it is 31.

4.3 Further difficuit Problems

The aim of the third phase has been o find further difficult problems. Some
new problem classes are introduced, because it is likely on the basis of the previous
experiences that these classes contain the desired items. At the end of this phase
the number of the generated problems have exceeded 2.000.000.

The class 19/8/15 contained the known most difficult problem. The pro-
cessing times of it are: 21, 21, 26, 20, 19, 18, 17, 17, 16, 16, 16, 16, 12. 12, 12, il.
11, 10, 10. The multi-fit solution is: M1: 21, 21; M2: 20, 20; M3. 19. i8; M4: 17,
17; M5: 16, 16, 10; M6: 16, 16, 10; M7: 12, 12, 12; M8: 11, 11. The value of it
is 42, which is achieved at M1 and M5 and MG. The solution provided by the list
scheduling with value 43 is this: M1: 21, 11, 11; M2: 21, 12; M3: 20, 12, 10; M4:
20, 12, 10; M5: 19, 16; M6: 18, 16; M7: 17, 16; M8: 17. 16; In the optima; solution
the completion time is 37 on all of the machines except the last one where it is 36:
M1: 21, 16; M2: 21, 16; M3: 20, 17; M4: 20, 17; M5: 19, 18; MG: 16, 11, 10; MT:
16, 11, 10; M8: 12, 12, 12.

The development of the accuracy of the most known first order difficult
problems has been: 3 < 3 < . The value 42/37, which n not proveu to
be an upper bound, is less than the value 72/61 guaranteed by the algorithm of
[Friesen-Langston 86). which uses many operations from a practical point of view.

There was no improvement in the positicn of most second order dithcuit
problem in this phase.
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4.4 Some Other Observations

Some other observations are obtained from the experiences. An important
one is the following. If L # U then U is far from the optimal value. The 10/5/15
ciass 1s the only one where the ratio (13) had a value greater then 1.22. The observed
areatest vaiue is [.42.

The aim of the improvements of the lower bound was o decrease the number
of cases to check. In Table 5 the the number of problems which have been proved
to be solved within 101%, and the observes worst (14) ratio observed before any
improving and after improving (without the application of Theorem 9) are provided
for the better of multi-fit and interchanging procedure.

parameters 101% (14)
before | after | before | after

10/3/15 || 88078 | 89871 ]| 1.217] 1.120
15/3/15 | 99344 | 99344 || 1.030 | 1.030
T0/3/30 || 65080 | 68313 || 1.262| 1.102
15/3/30 || 99008 | 99008 | 1.032] 1,032
10/3/60 || 44046 | 71572 || 1.211| 1.100
i5/3/60 || 99045 | 99045 || 1.032 | 1.032
36/3/15 || 100000 | 100000 || 1.005 ] 1.005
30/3/30 || 100000 | 100000 | 1.007 | 1.007
30/3/60 || 100000 | 100000 | 1.005 | 1.005
10/5/15 || 37056 | 88460 | 1.412| 1.200
30/5/15 || 97240 | 97240 || 1.040 | 1.040
G0/5/60 || 100000 | 100000 || 100000 | 100000

Table 3: The effect of the improvements of the lower bound
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Abstract

Tabu Search is a metastrategy for guiding known heuristics to overcome ioral ¢p-
timality. Successful applications of this kind of metaheuristic to a great variety of
problems have been reported in the literature. Recently some implementations cf
tabu search on parallel computers have come up. Whereas these implementiations
are tailored to specific problems we attempt to provide ideas for a more general
concept for developing paraliel tabu search algorithms.

1 Introduction

Due to the complexity of a great variely of combinatorial optunization problen:s, heuristic
algorithms are especially relevant for dealing with large scale problems. The main draw-
back of algorithms such as deterministic exchange procedures is their inahility to continue
the search upon becoming trapped in a local optimum. This suggests consideraticn of
recent techniques for guiding known leuristics Lo overcome iocai optimality. Following
this theme, the application of the tabu search metastrategy (or solving combinatonai
optimization problems is investigated.

The key issue in designing parallel algorithms is to decompose the execution of the
various ingredients of a procedure into processes cxecutable by parallel processors. !:npre-
vement procedures like tabu scarch or simulated anneaiing at first glance, liowever, have
an intrinsic sequential nature due to the idea of performing the neighbourhcod searcn
from one solution to the next. Therefore, there is not yet a common or generally applica-
ble parallelization of tabu search in the literature. In the sequel we attempt to describe
some general ideas and a classilication scheme for parallel tabu search algorithms.

In Section 2, we present an outline of Labu search. Before describing some concepts
for parallel tabu search algorithms in more detail (see Section 4), we briefly discuss some
of the cominon parallel machine models and algorithms in Section 3. Some examples
are given in Section 5 and finally some conclusions are drawn (Section 6). The attempt,
of course, is nol to give a complete treatment of parallel tabu search but to sketch the
polential this area of research carrics. lor a more delailed trcatment of the ideas of this
paper see VoB (1992).
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2 Tabu Search

Many solution approaches are characterized by identifying a neighbourhood of a given
solution which contains other (transformed) solutions that can be reached in a single
iteration. A transition from a feasible solution to a transformed feasibie solution is referred
to as a move and may be described by a set of one or more aftributes. In a zero-one
inieger programming context, e.g., these attributes may be the set of all possible value
assignments or changes in such assignments for the binary variables. (Then two attributes
denoting that a certain binary variable is set Lo 1 or 0, mnay be called complemeatary to
each other.) Following a steepest descent/mildest ascent approach, a move may either
result in a best possible improvement or a least deterioration of the objective function
value. Without additional control, however, such a process can cause a locally optimal
solution to be re-visited iminediately aller moving Lo a neighbour.

To prevent the search from endlessly cycling between the same solutions, tabu search
may be visualized as follows. Iinagine that the attributes of all inoves are stored in a run-
neng list, representing the trajectory of solutions encountered. Then, related Lo a sublist
of the running list a so-called tabu list may be defined. Based on certain restrictions. it
keeps some moves, consisting of attributes complementary to those of the running list,
which will be forbidden in at least one subsequent iteration because they might lead back
to a previously visited solution. Thus, the tabu list restricts the search to a subset of ad-
missible moves (consisting of admissible attribules or combinations of attributes). This
hopefully leads to 'good’ moves in each iteration without re-visiting solutions already
encountered. A general outline of a tabu search procedure (for solving a minimization
problem) may be described as {ollows:

Tabu Search

Given: A feasible solution z* with objective function value z°.
Start: Let z := z* with 2(z) = 2°*.
Iteration:
while stopping criterion is not fulfilled'do begin
(1) select best admissible move that transforms z into ' with objective func-
tion value z(z') and add its attributes Lo the running list
(2) perform tabu list management: compute moves to be set tabu, i.e., update
the tabu list
(3) perform exchanges: z := z', 2(z) = 2(z')
if z(z) < 2* then 2° := z(z),z+ := z endif
endwhile
Result: z* is the best of all detertnined solutions, with objective function value z*.

* % %
For a background on tabu search and a number of relerences on successful applications

of this metabeuristic sce, e.g., Glover (1989, 1990), Glover and Laguna (1992), and VoB
(1992).

1A possible stopping criterion can be, e.g., a prespecified time limit.
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Tabu List Management

Tabu list management concerns updating the tabu list, i.c., deciding on how many and
which moves have 1o be sct tabu within any iteration of the scarch. Up to now, the most
popular approach in literature is to apply static methods like the labu nawngatson method
(TNM). 2

In TNM, single atiributes are set Labu as soon as their complements have been pait
of a selected move. The atiributes stay tabu for a distinct time, i.c. number of ilerations.
until the probability of causing a solution’s re-visit is small. The elliciency of the algorithm
depends on the choice of the tabu status duration, i.c. the length t! size of the tabu list.
(In the literature often a 'magic’ tisize=T7 is propused.) lor the sake of an irproved
effectivity, a so-called aspiration level crilerion is considered, which permits the choice of
an attribute even when it is tabu. This can be advantageous when a new best solution
may be calculated, or when the tabu status of the attributes prevent any move f{rom
feasibility.

The static approach, though successful in a great number of applications, scems tu
be a rather limited one. Another probably more fruitful idea is to define an atiribute
as being polentially tabu il it belongs to a chosen move and to handle it in a candidate
list first. Via additional criteria these atiributes can be definitely included in the tabu
list if necessary, or exciuded from the candidate list if possible. Therelore, the candidate
list is an inlermediate list between a running list and a tabu list. Glover (1990} suggests
the use of different candidale list strategies in order to avoid extensive computational
effort without sacrificing soiution quality. In the sequel, we sketch the following dynamic
strategies for managiung tabu lists: the cencellation sequence method (CSM, i: a revised
version, c[. Dammeyer et al. (1991)), and the reverse elimination method (REM).

CSM as well as REM both use additional criteria for setting attributes tabu. The
primary goal is to permit the reversion of any attribute but oue between two solutions
to prevent from re-visiting the older one. To find those crilical moves, CSM needs a
candidate list that contains the complements of attribules being potentially tabu. This
aclive tabu list (ATL) is built like the running lisl where elimination of certain attributes
is furthermore permitted. Whenever an attribute of the last performed move finds its
complement on ATL this coinplement will be eliminated from ATL. All attributes bet-
ween the cancelled oue and its recently added complement build a cancellation sequence
separating the actual solution from the solution that has been lelt by the move that con-
tains the cancelled attribute. Any attribute but one of a cancellation sequence is ailowed
to be cancelled by future moves. This condition is sufficient but not necessary, as scie
additional aspects have to be taken into account so that CSM works well.

The method works well for the case that a move consists of exactly one attribute, i.e.,
when so-called single-atlribule moves are considered instead of multi-aitribute moves. In
addition, the correspounding paramcters have to be chosen appropriately (e.g. the tabu
list duration of a tabu attribute, and how to apply the aspiration level crilerion). Ap-
plying CSM to multi-atiribute moves needs additional criteria to prevent errors caused
by uncovered special cases. E.g. for paired-allribule moves (imoves consisting of exactly
two attributes) those moves must be prohibited that may cancel a canceilation sequence
consisting of exactly Lwo attributes (because none of them is tabu when choosing a move}.
In addition, for building a cancellation sequence, the remaining attributes of the oides
and the currcnt move are not necessarily taken into consideration. This depends on the
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order in which the move's atiributes are added to ATL.

The conditions of TNM and CSM need not be necessary to prevent fromn re-visiting
previously encountiered solutions. Necessity, however, can be achicved by REM. The idea
of REM is that any solulion can only be re-visited in the next iteration if it is a neighbour
of the current solution. Thercfore, in each iteration the running list will be traced back
‘o determine all moves which have to be set tabu (since they would lead to an already
explored solution). For this purpose, a residual cancellation sequence (RCS) is built up
stepwise by tracing back the running list. In each step exactly one attribute is processed.
from last to first. After initializing an empty RCS, only those attributes are added whose
complements are not in ihe sequence. Otherwise their complements in the RCS are
eliminated (i.e. cancelled). Then at each tracing step il is known which attributes have
to be raversed in order to turn the current solution back into one examined at an earlier
iteratior: of the search. If the remaining attributes in the RCS can be reversed by exactly
cne move then this move is tabu in the next iteration. For single-attribute moves, for
instance, the length of an RCS must be oue Lo enforce a tabu move. Correspondingly, in
a shightly modificd inethod REM2 all connnon neighbours of the current solution and of
an already explored one will be forbidden. These neighbours were implicitly investigated
during a former step of the procedure (due to the choice of a best non-tabu neighbour)
and nee. not be looked at again (cf. VoB (1992)).

Obviously, the execution of REM and of REM2 represents a necessary and sufficient
criterion to prevent from re-visiling known solutions. Since the computational effort of
REM increases if the number of iterations increases, ideas for reducing the number of
computations have been developed (cf. Glover (1990) and Dammmeyer and VoB (1991a)).

For applications and (sequential) comparisons of TNM, CSM, and REM see Damineyer
and Vo8 (1991b) and Domschke et al. (1992).

Search Intensification and Search Diversification

A general idea for reducing the computational effort in a tabu search algorithm is that of
search intensification using a so-called short terin memory. Its basic idea is to observe the
attributes of all performed moves and to eliminate those from further consideration that
have not been part of any solution generated during a given number of iterations. This
results in a concentration of the search wherc the number of neighbourhood solutions in
each ileration. and consequently the computational efforl, decreascs. Obviously the cost
of this reduction can be a loss of accuracy.

Correspondingly, a search diversification may be defined as a long lerm memory to
nenalize often selected assignments. Then the neighbourhood scarch can be led into not
vet explored regions where the tabu list operation is restarted (resulting in an increased
computation time). An appealing opportunity for search diversification is created by the
idea of REM and REM?2 resulting in REML for ¢ > 2 and intcger. Il at any tracing
step the attributes that have to be reversed to turn the current solution back into an
aiready explored one equal exactly ¢ moves then it is possible to set these moves tabu
for the next iteration. Note that for the case of multi-attribute moves. due to various
combinations of attrilbutes Lo moves, cven more than ¢ moves may be set tabu in order lo
avoid dilferent paths through the search space leading to the same solution. Accordingly,
search diversification is obvious.
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3 Parallel Machine Models

Over the years a great variety of architectures hiave been proposed for parallel computing.
The most widely known classification of parallel machine models (although someliow
limited) is given by Flynn (1966). He distinguishes four general classes based on the idea
of whether single or multiple instruction streams are executed on either one or multiple
data set streams:

e SISD (Single Instruction, Single Data) inciuding the classical sequential computers

o SIMD (Single [nstruction, Multiple Data) including vector computers and array
processors

¢ MISD (Multsple Instructions, Single Data)

o MIMD (Multiple Instructions, Multiple Data)} with the processors performing each
successive set of instructions either simultaneously (synchronous) or independently
(asynchronous)

The above classificalion of parailel machine models may lead to different classes of
parallel algorithms. Vectorized algorithmns operate uniforinly on vectors of data sets
(SIMD). Systolic ones operate rhythiically on streamns of data sets (SIMD and synchro-
nous MIMD). Parallel processing algorithms operate on a set of synchronously commu-
nicaling parallel processors (synchronous MIMD). Correspondingly, asynchrouous com-
municalion leads Lo disiribuled processing algorithms (asyuchronous MIMD and neural
networks).

In addition to architectural aspects communication nelworks are used to classifly par-
allel machine models. lor instance, it imakes a dillerence whether processors have si-
multaneous access Lo a shared mcmory, allowing cornmunication between two acbitrary
processors in constaut time, or whether they communicate through a fixed interconnection
network. Less formally, in certain models it is assumed thal there is a masler processor
controlling the cominunication of the network, with the remaining processors of the net-
work called slaves. l'or a compreheunsive survey on parallel miachines and algorithms see
e.g. Akl (1989) and Van Leeuwen (1990).

The quality of parallel algorithms may be judged by a number of quantities, the most
important one being the speedup, which is the running time of the best sequential imple-
mentation of the algorithm divided by the running time of the parallel implementation
executed on a number of p processors. Similarly, given a prespecified time limit (cf. foot-
note 1) a scaleup may be defined as the ratio of the average problem sizes solvable with
a parallel implementation to a sequential itnplementation of the algorithm. With heuri-
stics, the solution quality attainable may also be measured. The processor utilization or
efficiency is the speedup divided by p. The best one can achieve is a speedup of p and an
efliciency equal Lo one.

4 Parallel Tabu Search Algorithms

Due to the success and the underlying simplicity of the main idea of tabu search, recently
some implementations on parallel computers have come up tailored to specific problems.
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Surprisingly, to the best of our knowledge, they are solely devoted to problems using the
notion of paired-attribute moves: the travelling salesman problem, the job shop problem,
and the quadratic assigniment problem (compare Section 5).

In a first step we shall describe a classification of different types of parailelism that
is applicable to most iterative search techniques (cf. VoB (1992)). Its basis is the idea of
having different starting solutions or candidale solutions (so-called balls, motivated by the
idea ol mountains’ like solution space where a ball is rolling to find a stable low altitude
stale) as well as a number of different strategies, c.g. based on various possibilities of the
parameler setting or on the tabu list management.

s SBSS (Single [all, Single Strategy)

The algorithm staris {rom exactly one given feasible solution and performs its moves
following exactly one strategy.

o SBMS (Single Ball, Mulliple Stralegies)

The algorithm starts from exactly one given feasible solution by the use of different
strategics where cach stralegy s perforiied on a dilferent processor.

e MBSS (Mulliple Balls, Single Stralegy)

The algorithm starts from different initial [casible solutions, cach on a different pro-
cessor. The same type of instruction, i.e. strategy, is pecformed on each processor.

o MBMS (Multiple Balls. Multiple Strategies)

The algorithm starts from dilferent initial feasible solutions performing different
stralcgies.

in waat follows we discuss the above ideas in more detail with special emphasis on
further principles of parallelism within specific strategies. For ease of description we
assume the notion of parallel or distributed processing algorithms.

SBSS

The single ball, single strategy idea is the simplest version, and ohviously corresponds to
he idea of classical sequential computations (cf. the SISD-model). This, however, does
nol resirict Lhe possibilily of parallelization.

Starting from au initial leasible solution, Lhe best wiove which is nol tabu must be
performed. The search {or this move may he done in parallel by decorposing the set of
admissible moves inte a number of subsets. E.g. in a master-slave architecture each (slave)
processor may evaluate the hest move in a specific subset. The best move of each subset
iz communicated to the master who picks the overall best as the trausforined solution and
also performus the tabu list management.

To restrict the amount of communication necessary for synchronizing the data each
slave could determine the hest possible move in its subset without observing any tabu
list, while the tabu list in Lthe samc time is updated by thic master. Then the master picks
among all answers Lthe best which is not tabu. If no such move exists, a second Lrial must
be made while each processor has to receive and to observe the tabu list. Otherwise the
next iteration is Lo be performed.
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Additional ideas may be developed with respect Lo the specific strategies. In ‘I'NM.
the tabu list management may be done by each processor itself by simpiy providing the
most recent move (whose complement will be in the list). In CSM, the master builds vh
canccllation sequences aud partitions them Lo Lle slaves, i.c., every slave has b rvaluats.
a certain number of sequences. In subsequent ileratious. the attributes of tlie ~nirreas
moves are communicated. Whenever a cancellation sequence is reduced tu 1 it wii he
re-coimnunicated to the master.

SBMS

In SBMS each processor execules a process which is one of the above iabu search strawegies
with different tabu conditions and parameters. iike e.g. REMt for various z’ Far TNM this
can be different (eventuaily randomly modified) tabu list lengths; for CSM. diffarent tabu
durations may be considered. The (slave) processors are halled after a prespifi=d 'ime
and the results are compared and the best one is calculated. A restart is possiti= with the
best or a good seed solution. Each strategy may take a different path through tiie searck:
space because of different tabu list management or parameter setting. A restart iney be
performed either with empty running and tabu lists or wilh a previously encountered list.

MBSS

The multiple balls approaches start from at most p (the number of processors available)
different initial feasible solutions, “whose calculation can vary. They may be determined
either randomly or by applying different heuristics to the same problem. This may awo
incorporate ideas involving different diversification and intensification sirategies as des-
cribed above. A third possibility assumes one given feasible soiution and starls with a
suilable subset of its transforimed (neighbourhood} solutions. (Especially with REM2 it
may be assured that even in future iterations there 1s no uverlap with the initiai feasihie
solutions of the other processors.) Tlie singie strategy approach assumes ilie application
of exactly one tabu search algorithm with the same parameter setting for all processors.
As with SBMS, the processes may be halted after a specilic Litne period to coordinate
their results and possibly to initiale a restart with new (hopefully) improved solutions.
If the processes are performed synchronously, then the stopping may be initiated after
having generated, say, i successive moves. On synchronous MIMD machines the iatter
approach may be especially relevant. Note that the above-mentioned possibility of pa-
rallelization within SBSS is related to a method with m = | where the best transition is
evaluated.? With respect to MBSS, this modifies to the evaluation of the p best moves
usable for a restart. For m > 2 this approach may be used as a look ahead method.

MBMS

The multiple balls, multiple strategics approach subsumes all previous classes, allowinug
search within the solution space from different starting points with different methods or
parameter settings.

2This gives reference to incorporate diflerent candidate list strategies. (Note the correspondance o
ideas of beamn search, cf. Glover (1990).)
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& Ixamples

i, the cequel we sketeh some of e ideas given in the previous sections with respect to well
wnown cumoinaiorial optinnization problems. As meutioned above, we only found some
work on problems with Lhie idea ot paired-altribute moves to perforn the neighbourhood
sear-n. We swart with respec te ninary integer programming, exploiting single-attribute
moves.

Consider the 3BSS concept. Also consider n decision variables in a binary problem
with ao {(impiicit or expiicit) restriction on the number of variables set to either 1 or 0. We
may define simple ADD- or DROP-moves by complementing the corresponding entrics
of the binary variables z,. Assuine the existence of n + 2 processors with n + 2 being
the master processor. The tabu list management is performed by processor n + 1. In
any ileration of the search, cach of the synchronously controtled processors 1 € {1,...,n}
receives the information whose variables” entry has beeu chosea to be exchanged as the
most recent eve. This move is performed together with thic reversion of z,. This usually
can be done quite elficiently by reconstructing the previous solution stored at 1 with at
:nost one assignment compiemented. Then ¢ offers its objective function value to Lhe
snasker who re-calis all resulls of processors referring to non-tabu tnoves (evaluated by
srocessor 1o+ 1) Clhviously Lins approacu way be generalized in various ways Lo the uiore
seneral classes described above.

This concept may be applied. c.z., 1o the warehouse location problem (WLP), to
Steiner’s probiem in graphs (S1°). aud to the multiconstraint zero-one knapsack problem
{MCKP). E.g., for WLP this neighbournood search means a reallocation of costumers.
i.e., upening a new location : results in re-allocating all costumers for which ¢ is closer
ihan the depot currently used. Correspondingly, closing a location 1 forces all costumers
receiving service {rom t Lo its second nearest location.

An even more challenging reoptimization problem arises within SP. There, an itera-
vion of the neighbouriiood search may consist of changing a node-oriented binary variable
2ud calculating a minimuni spaniing tree (MST) on the set of all nodes with entry 1 of
vhe corresponding variables. The guestion is, whelher reoptimization may be carried out
cither by solving the modified problem anew or by starting from a previous optimal solu-
tion found by the saine processor (sce Glover et al. (1992) for a corresponding sequential
approach with respect to MS'T).

If the number or weighted number of variables with value 1 is limited (as for MCKP)
or fixed (as e.g. in the p-median problem) then the same approach may be applied with
combined ADD/DROP- or SWAI’-moves leading to paired-atiribute inoves.

Malek et al. (1989) follow the SBMS approach to solve travelling salesinan problems
{TSP) by TNM with the 2-opt exchange as moves. The tabu atiributes follow different
strategies in that they are restricted either to one or to the two cities that have been
swapped or Lo the cities and their respective positions in tour. In addition different tabu
parameters were used on diflerent processors. For another parailel tabu search algorithin
for ihie TSP see Fiechter (1940).

The quadratic assignment problem (QADP) is treated by Chakrapani and Skorin-Kapov
(1991, 1992} by the use of SBSS and TNM with search intensification and search diversi-
fication performed sequentially while evaluating the moves in parallel. The set of moves
is partitioned into disjoint subsels, each one on a different processor as described above.
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The neighbourhood search is performed by pairwise interchanges such that fer (}{n-:
processors available all moves can be evaluated in constant time, achieving a speedur; of
O(n?/logn). Battiti and Tecchiolli (1992) use TNM together with a hasning funciin
and compare their algorithm aiso with a parallel genctic algorithm. Another paralic] al
gorithm tor QAP based on TNM (with randomly varying tlsize: has been presenied i
Taillard (1991). It is an SBSS approach, Loo. The same idea has also been applied Lo the
job shop as well as Lo the flow shop problem (see Taillard (1989, 1990)). The iatier. ‘v
fact, also describes a single-attribute based implementation with attributes corresponding
to objective function values. Chakrapani and Skorin-Kapov (1992) is especiaily relesant
since its implementation is based on a conuectionist approach related to a Doltzniam:

machine (cf. Aarts and Korst (1989)).

6 Conclusions

We have summarized soine ideas for developing parailei tabu searcii aigorithins. Motivaica
by a famous classification scheme for parallel machine models we proposed a classificatic:
scheme for parallel tabu search algorithms. While research in this field is still in its infancy
we believe that reasonable achievements in the following two aspects will be provided.

o Development of a {ramnework for a general parallel tabu search algorithm that can
be applied to a wide range of combinatorial optimization problems.

¢ Empirical results for parallel taby search algocithins tailored to specific problems.

Some results known from the literature (cf. Section 5) support this feeling. Despite in-
emphasis on parallel tabu search, sequential testing is still far from complete. In addition.
the tabu search metastrategy should be tested on different classes of parallei algorithms
and machine models. Especially relevant scems io be a comparison of algorithins vai-
lored Lo differeut hardwarce specifications like vector computers versus synchrouous and
asynchronous MIMD inachines. [lowever, one should take into accouni identical user
specifications with respect Lo tabu search (e.g. parameter setting, definition of the neigh
bourhood). Note that our classification scheme is not restriced to parallel tabu search,
but may be applied for nearly any iterative search procedure, such as simulated annezling
or genetic algorithms.
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The work of a transport company (bus, train. etc.) may be
represented by a sch-dule which specifies the journeys to be
undertaken. Figure 1 is a graphical representation of part of
such a schedule, with each line showing the times that a service
begins and ends, and each '+' showing the time of a relier
opportunity at which the driver of that service may be replaced
by another driver. An indivisible period which must be worked by
the same driver (e.g. between two consecutive relijef

opportunities) is called a workpiece.
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Fiqure ! - Graphical Representation of a Schedule
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Each driver's working day consists of a number of workpieces. A
complete specification of a driver's working day. including
sign-on, sign-uff and mealbreak times., is cailed a duty. Every
tradsport company has many conditions that 1ts duties must
satisfy. usually called the "union agreement’”. This agreement may
specify, for example, the maximum length of a working day and
durations of mealbreaks. There is usually a very large number of

different duties that could be used to cover a schedule.
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There are several computer systems which can be used to determine
a set of valid drivers' duties to cover a schedule provided by a
trangport company. This paper will consider enhancements that
have recently been devised for one such system calied IMPACS
{Integer Mathematical Programming for Automatic Crew Scheduling).
This system was developed at the University of Leeds by Wren &
Smith{l] and is now marketed by the Hoskyns Grcup. MPACS has
mainly been used by bus companies {(throughout the world) but it

has also been used by train and tram companies.

At the heart of the IMPACS system 1s an integer Programming model
which has two pre—emptively ordered objectives: Lo minimise %the
total number of duties used to cover a given schedule and to
minimise a cost function which reflects both the wage cost and
undesirable features of duties. The model's constraints ensure
that all workpieces are covered at least once. with some
specially selected workpieces being covered exactly once. Also.
each duty 1s classified according to 1ts type (e.g. early. late.
overtime) and side constraints can be added which limit the

number cf duties of any type that are toc be used.

Thus. the model is of the mixed set covering/partitioning type.

possibly with the addition of side constraints. Ongoing research
attempts to exploit further the special structure of the IMPACS

model and to take advantage of recent developments 1in

mathematical programming algorithms.
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The IMPACS model has previousiy been solved using the following

four—-stage process. For the first three stages, the Linear

Programming relaxation of the model 1s used.

Stage 1

6]
cr
[+1]
(3
[

Stage 3

Stage 4

Minimise the total number of duties using a Primal

Simplex algorithm.

4Add a constraint which ensures that the integral number
of duties does not 1ncrease and minimigse the cost

runction ucing a Prima! Simplex algorithm.

If the total number of duties 1s not integral. add a
suitaple constraint, and reoptimise using a Dual

Simpiex aigorithm.

DPetermine an integer solution using Branch and Bound

techniques with constraint branching.

Optimisat:on within the IMPACS system is based on Ryan's ZIP

package(21. The performance of this package has been improved by

incorporating Goldfarb & Reid's Primail Steepest Edge algorithm(3]

and a Dual Steepest Edge algorithm due to Forrest & Goidfarb(4].

This paper will consider a new strategy for solving the Linear

Programming relaxation. Enhancements to stage 4 are the subject

of separate work.
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Each of stages 1 and 2 of the previous strategy typically 1nvolve
a large number of iterations, resulting in the time to solve (he
Linear Programming relaxation being a significant proportion of
the total soluticn time. This is due to the objectives for stages
1 and 2 being different and the high degree of degeneracy
inherent in the model. -Also, the constraint that is added at
stage 2 is fully dense, and this substantially increases

iteration timings.

These difficulties have been addressed by:

1. Using a single weighted objective function.
and 2. Solving the resulting model using a Dual Steepest Edce

algorithm.

The weight that i3 used to combine the two objectives is
relatively small, and is determined by applying an algorithm due
to Sherali[S] to the IMPACS model. To initiate the Dual Simplex
algorithm, an heuristic has been developed to produce initial

basic dual feasible solutions.

The paper will conclude with the presentation of computationa:
results for real world problems with numbers of constraints in
the range 125 to 450 and numbers of variables in the range 450C
to 11000. The results suggest that the new strategy significantiy

reduces solution timiags.
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DERIVING THE DUAL OF AN INTEGER PROGRAMNiF:
ITS INTERPRETATIONS AND USES

H.P. Williams

Faculty of Mathematical Studies, University of Southampton, U.K.

This talk will begin by discussing duality in Mathematics in a widex
context e.g. in the areas of Set Theory and Logic, Projective Geometry anc
Convex Polytopes. Some of the mathematical properties which are normaliv
expected of a dual will be listed e.g. Reflexivity and Symmetry. Linear
Programming (LP) and Congruence duality wili then be examined for both its
mathematical properties and computational and economic uses e.g. Proving
Optimality, Sensitivity Analysis and Pricing Imputation.

A number of possible Integer Programming (IP) duals will t=
mentioned e.g. the Gomory-Baumol dual, Lagrangean dual and Surrogaie
dual. They all lack some of the above properties and in particular do not
provide a guaranteed proof of optimality.

It will be suggested that the most satisfactory dual arises from
examining the Value Functions and Consistency Testers of IPs. For Pure
IPs (PIPs) these take the form of Gomory Functions. Gomory functions are
built up by the repeated applications of the operations of

(i) Non-negative linear contributions.
(ii) Integer round-up.
(ii1) Taking Maxima.
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These can be expressed in the form
MaX(Cl, Cz, caey Cﬂ) (l)

where the C; are Chvital- Functions which are built up from operations (i)
and (ii).

By companson the Value function of the Consistency Tester of the
corresvonding LP relaxauon wiil involve functions of the form

Max((—fl, 62, s Cp) 2

where r < n and '51 is obtained from C; by dropping the operation (ii).

The C; will therefore be non-negative linear conbinations of the right-
hand-side coefficients, arising from the dual vertices of the LP.

It will be shown that those C; which correspond to a C; in (2) can be
obtained by finding the Value function of PIPs over cones. This may be done
by obtaining the Hermite Normal Form of the corresponding basis matrix for
the LP relaxation. The resulting doubly recursive function of the right-hand-
side coefficients gives the Value function (and Consistency tester). It is
suggested that the depth of this recursion is a measure of complexity. The
problem of extending this method to give the Value function and Consistency
tester for a general PIP will be considered.

it will be shown that the Value function for a Mixed IP (MIP) is not
generally a Gomory function although the Consistency tester is. By
incorporating this objective as a constraint and finding the consistency tester
of this system it is then possible to characterise the Value function of the
MIP.

The Value function for certain MIP applications has considerable economic
importance since it shows how indivisible resources should be "priced”. This
aspect will be considered in relation to the Fixed Charge Problem and the
Power Systems Loading Problem.




1 General Problem Description

Analysts frequently face the following problem: given a multivariate (possi-
bly correlated) population, how does one determine a good estimate of the
probability functior {cr some number of its moments) for a complicated func-
tion of the porilatior’s variables? The primary problem to consider then 1
what is the mcst efficient way to sample from the input population, espe-
cially wher sampling is extremely expensive and must therefore be limited
to a predeterminea (small) sample size. The desire is to generate a sampling
plan which will be representative of the population, and produce estimates
of moments which bave desirable statistical properties. However, since the
larger the sample, the iarger the cost, there is a trade-off between generating
the best estimates and reducing the amount of sampling. In order to obtain
better estimates from sampling, analysts may determine them by using data
collected from a stratified sampling of the population.

A special form of stratified sampling is latin hypercube sampling.
In this stratification, the cumulative distribution function for each of the
n population variables is divided into m blocks. The intersection of these
blocks makes up a hypercube having m" cells. If all m™ cells were sampled.
the sampling approach would be a “full factorial design”. Since sampling
is assumed to be expensive, LHS limits the sampling to only m of the m"
possible cells. Thus, a LHS plan is not a hypercube. but is equivalent to a
m X n matrix such that each of the m rows defines one sampling cell of a m™
hypercube.

‘ The ** row of 2 LHS sampling plan makes up what will be referred
to as “run ¢". Defining this grouping as a run is motivated by the fact
that typical applications of LHS involve computer-based models where the
number of runs, m, is predetermined. To ensure that a plan offers a cross
section of the sampling space, an additional feature of LHS is that each block
of each variable must be picked once. Thus, each column of a LHS plan is a
permutation of the numbers 1 to m.
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Combinatorial optimization, by its broad nature, has been used
to model and solve a variety of problems including those arising in decision,
engineering, and physical sciences. The focus of this work is to consider
the solution of a sampling design problem using combinatorial optimization.
The particular design problem of interest here 1s minimum-correlation 1atin
hypercube sampling (hereafter referred to as MCLHS). The central point of
this research is the development of combinatorial optimization procedures
which provide MCLHS plans. This is an entirely new approach for finding
MCLHS plans.

We introduce integer programming (IP) formulations of this problem
and develop a procedure for determining minimum-correlation sampling de-
signs. We provide the obvious IP formulation of the MCLHS problem whick
results in a problem having an exponential number of variables and a large
(polynomial) number of constraints. We then transform the problem into
a sequence of assignment problems with side knapsack equations, having a
polynomial number of variables. This decomposition was found by exploit-
ing the special structure of the problem and finding tight objective function
lower bounds. We note that even after the decomposition, the problem stili
belongs to the NP-hard class. Although the decomposition and subsequent
development of solution procedures for the smaller problems are discussea
within the context of the sampling design problem, the approach may be
applicable to various permutation-related IP problems such as the general
quadratic assignment problem, assignment problems with side constraints,
and the asymmetric travelling salesman problem variation where the objec-
tive is to find a tour which meets a specific cost value. Thus, while the
research presented here focuses on solution approaches for the MCLHS prob-
lem, the general theory and findings might well prove useful for the solution
of other problems known to be NP-complete.

We begin with a description of the general LHS and MCLHS problems,
followed by integer programming formulations and a discussion of optimiza-
tion procedures developed.
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To describe the standard approach to LHS, we begin by writing the
vector of variables as (X, X3, ..., X,;) and assume for the time being that the
variables are mutually independent. The range of each X, is divided into m
(= number of runs) ascending intervals of equal probability and a random
value is drawn on each interval for each variable. Next, we generate the order
in which the m values of each variable are to be used in each run by creating
a sequence of n random permutations of the integers | to m. Finally, we
form the required vector for the :** run by taking the :** number from each
of the n random permutations.

Latin hypercube sampling plans generated by the staudard approach
are restricted only in the sense that for each variable. a vaiue must be picked
once and only once from each of its m intervais. A point we have not vet
considered is the impact that correlations between the coiuinnsof a LHS sam
pling plan may have on the generated estimates. tor case of explanation, we
will continue the assumption that the population variables are mutualiy in-
dependent, although similar results are obtained fer any given population
covariance matrix. For the n variables, although their sampling plan permu-
tations are determined independently, a standard LHS plan will, in general.
have some level of correlation between the pairs of permutations. Thus. the
sampling plans will not, in general, parallel the correlations of the true joint
distributions. If LHS sampling is done without concern for the correlation
pattern (or lack thereof), the estimators cannot be guaranteed to be unbiased
or even consistent.

The desire then is to design LHS plans which incorporate the vari-
ables’ true pairwise correlations. For two variables, X; and X;, with distri-
bution functions having strictly positive standard deviations, c¢; and o}, the
correlation coeflicient between the variables is defined as

_cov(X;, X;)

ii
! 0’.'0','

where cov(X;, X;) denotes the covariance between variables X; and Xj.
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To approzimate the pairwise correlation coefficients p,;, we will con-
sider the correlation coeflicients between the pairs of LHS plan permutations
associated with variables X, and X;. (The two forms of correlations are equal
when X; and X; are both uniformly distributed.) For permutations of the
integers from 1 through m, it can be shown that the correlation coefficient
of the indices of any pair of permutations is

. Gzrlez
r— b ==
m(m?2 — 1)’

where D, is the difference between the vt integer elements in the vectors.
This is known as the Spearman rank correlation coefficient and can take on
values in the interval [—1,1]. The expected value of the rank correlation
coefficient is 0, and its variance 1s 1/(m — 1). Throughout the remainder
of this paper, we denote the rank correlation estimate between the column
permutations of variables X; and X, by #,;.

For illustration, suppose we want to run a model with three mutually
independent uniformly distributed variables (for simplicity, z, y, and z),
each to be represented by values chosen from their respective sample spaces.
Assuming further that we are allowed only six runs, consider the LHS plan
given below:

Table 1: Latin Hypercube Sampling Example
Model Run Variable Values

1 oy W Zs
2 T2 Ye 23
3 I3 Ys 24
4 T4 Y3 21
b} Ts Y2 29
6 Te Y4 2%

The rank correlation coefficients for this example are
7.:12 = 000’ 7:23 = 000, 7:‘3 = OOO,

and hence, it appropriately models the mutual independence of the three
variables. If, for example, the variables were dependent with true joint dis-
tributions having pairwise rank correlations of say, ri; = —.6, ry3 = —.42,
and ry3 = .14, then this particular sampling plan would not suitably parallel
these true rank correlations.
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The objective of the restricted LHS problem we consider is the selec-
tion of column permutations which attempt to meet exactly the true rank
correlations associated with the variables. In this way, sampling is intended
to match more closely the true marginal distributions of the input var-
ables. Specifically, the minimization problem, called minimum-correlation
LHS (MCLHS), provides a sampling specification minimizing the sum of the
absolute values of the pairwise differences (i; — r;). In much of the discus-
sion however we will minimize the sum of the absolute values of the pairwise
rank correlations 7;;. This models the situation when independence of the
variables is likely (i.e., ri; = 0).

2 Integer Programming Models for MCLHS

The minimum-correlation latin hypercube sampling problem described can
be formulated as a n-index assignment problem with side knapsack equaiion

constraints (APSEC). To begin, define:

1 if vyv,...v, is a sampled cell
where the n-indices on the r-variable,
v1,V2,...,0y, can each take a value from 1 to m
0 otherwise

Lyy...vn

and also df}, dj; € RY such that:

1))

dg—d;:(f.-,——r;,-)m(m2-——l)/6 t=1...n, j>1.
Thus, df; and dj; are the positive and negative magnitudes of the devia-
tions from the true rank correlation of the rank correlation between column
permuations ¢ and j.

Equivalent to minimizing the sum }_7_, s "—‘ﬂ:—’—ll beg —ri |y is
minimizing the objective function

min {'i‘: > (df+dj }

=1 3>
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Although the formulations described below are applicable to cases
with nonzero r;;, for ease of presentation, we will assume r;; = 0. It can be

shown that
m(m? ~ 1)#/6 = m(m®-1)/6 — Y D?

will be integer valued for all pairs of permutations. Thus, we can now define
df, d;; € Z} such that:

i)
d?}-d;}:m(mQ——l)ﬂj/G i=1...n, _]>z

In order that the IP formulation fully encompasses the MCLHS, it
must include assignment constraints that draw a one-to-one correspondence
between the positive-valued z,, ,, of a feasible solution and n-tuples of col-
umn permutations. Thus, the j** column permutation requires the m assign-
ment constraints

ZZ Z Loy..uvp — vj=1...m

vl‘-l wn=l vn=1

excludmg DU
Additional constraints are needed to enforce that

m(m?— 1)f;;/6 = d}, — d; holds for all i and j, ¢ < j < n. These constraints
are

T S S (= T = m(mi—1)/6 Vi<j<n

=1 =1 vp=1

In addition to belonging to the class of NP-complete problems, we see
that this formulation requires m"™ z-variables as well as a total of n(n — 1)

deviational (d}},d;;) variables. There are nm acsignment constraints and

'2') constraints to ensure that m(m? — 1)f;;/6 = df; — d;. Hence, although
this formulation is the most straightforward, we will present other APSEC

formulations which have more reasonable problem size growth.
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To develop alternative formulations, we use the objective function
lower bound of ;)6/ (m(m? — 1)) when m = 2 + 4l for some nonnegative
integer [, and zero otherwise, and make the assumption that given k — 1
column permutations with minimum Z;‘;; 121 | 745 |, it is possible to fix
these columns and find an optimal k** column permutation. Our research
and empirical results have shown that these are valid assumptions.

Suppose we have a solution to the (k — 1)-dimensional problem, and
wish to use this solution to obtain a solution to the k-dimensional problem.
Let (p',p?% ...,p*) denote the corresponding column permutation vectors,

and define
1 if the :** element of columnn &

Ty = 1s assigned value j
0 otherwise

To ensure that column k is a permutation of numbers 1...m , we add the
assignment constraints :

ZI.’,’ =1 j::l,...,m

Zz‘-j =1 t=1,...,m.
J

We see that the positive elements of an z-solution define a k** column. We
will henceforth interchangably use the terms “an z-solution” and “the k"
column defined by the positive elements of z”.

There are (k — 1) additional constraints of the following form:

(1) diy—dg=m(m*-1)/6 - L, T (pl - )z t=1,...,k=1

where p! is the i** entry of the column permutation vector p*. With these
constraints, we implicitly fix the (k — 1) previously found column permuta-
tions.
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The formulation defined thus far with objective function

k-1

min Y (d} +dz),

=1

is a general formulation for finding a k** column permutation, having fixed
the (k — 1) column permutations that minimize /=% 5~,5; { 7i; |. Empirical
evidence strongly supports that there exists a £** column that meets the
lower bound for | r4 |, t = 1,...,k — 1. Hence, there will exist a solution to

the assignment conctraints that generates a k** column satisfying

| m(m? ~ 1)fu/6 | =

9 2 _ 1 if m=2+4+41 leZ!
| mim” —1)/6 _ZD" I = { 0 otherwise
forallt = 1,...&4— 1. To incorporate this into the formulation, we require
that df, and 4, ¢ =1,...k =1 be binary variables. For
m #£ 6 +4l, | € Z!, any solution that obtains the lower bound must have
dh +d; = 0. If however, m = 2 + 4l, | € Z}, we can conclude that
dh +d; =1, t=1,...k— 1. In either case, the problem can be restated
as a feasibility problem with no objective function. We shall refer to this
feasibility assignment problem with side equations as FASE.

The FASE formulation follows the conjecture that one can itera-
tively solve k-dimensional problems using the previously determined (k — 1)-
dimensional solutions. Thus, rather than solving one large APSEC program
with m™ + n{n — 1) variables and nm + (;‘) constraints, one could solve a
sequence of smaller two-dimensional FASE problems with at most m? + 2k
variables and 2m + k constraints (2 < k < n ).

In the presentation, we shall discuss heuristic and Lagrangean-based
solution procedures developed to solve the MCLHS problem and its equiva-
lent formulation FASE.
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Abstract

This paper describes a standard for the use of GAMS 2.25 as an
object-oriented modeling language. The over-riding benefit of using
this technique is the ease with which many individuals can simulta-
neously develop extraordinarily complex modeling systems. Lesser,
but still important benefits include: structured user-interface design,
plug-in/plug-out models. isolating portions of the problem, easy main-
tenance and updates, and model re-use. Simultaneous model devel-
opment stems from the latter benefits, while all of these advantages
derive from the clear, rigorous organization of your model as specified
in the following standard.

We present the concepts of encapsulation (forming objects) and hi-
erarchical modeling in the context of mathematical modeling. Encap-
sulation is a well-known programming technique that is newly applied
to modeling, and our version of hierarchical modeling differs slightly
from past notions. Traditionally, a hierarchical model embodies the
concept of forming larger models from a collection of sub-models. The
following method is based on a partition of the relations (equaticns) of
the model, where the elements of the partition are partially ordered.

1 Overview

Object-oriented modeling (OOM) is a method of modeling that closely im-
itates object-oriented programming (OOP) [?,7,7]. We have developed a
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standard for using GAMS 2.25 {?] as an OOM language. The difference be-
ing that the OO mnodels are much more structured and abstract. This makes
them more user friendly because their use is well defined by the structure
and their details are hidden within. OO Models thus appear simpler and
more uniform to the user.*

Four essential properties set OOM apart from standard GAMS 2.25:

Routines: Structuring the assignment statements into procedures as in Pas-
cal.

Encapsulation: Combining data and variables with the equations and as-
signment statements that manipulate them to form a new data type—a
model.

Information Inheritance: Defining a model that uses other models in its
formulation, with each sub-model inheriting the information from its
ancestors. The use of models within models defines the use hierarchy
which forms a partial ordering of all used models.

Polymorphism: Giving a model’s routine one name that is shared by all
descendants in the use hierarchy, with each descendant implementing
the routine in a way appropriate to itself.

Routines are implemented using the $INCLUDE statment. Encapsulation,
inheritance, and polymorphism are implemented in GAMS 2.25 through self
discipline. The following is a detailed discussion of the principles and im-
plementation of OOM in GAMS 2.25 through self-discipline. We hope that
the future will bring the language extensions need for a proper implementa-
tion. In which case, the standard described below would be enforced by the
compiler.

There are now a variety of experimental modeling languages offering
object-oriented features, notably ASCEND [?] and MODEL.LA (?]. We of-
fer a form of inheritance that differs from the class inheritance of standard
OOP and OOM languages. This is an extra restriction placed on our models
based on deferred requirements, and the use of models within other models.
Data and variables are legated (passed down) to the descendants, while meth-
ods are used by ancestors to ensure that deferred information' is properly

defined.

'Data and variables that have been declared but are yet undefined.
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There is a restricted form of communication contro! between the inacele o
the use hierarchy. Essentially, desccndants can inspect ancesior infori-ation
but ancestors can o..1y ask that certain informatior be provided. in this way.
siblings communicate through the parent, and its deferred informaiion.

We further expound on these concepts and offer a full accountiny of the
presentation. First we introduce a model and how it is encapsuiated. Thic
leads to an overview of traditional hierarchical modeling. Then we explain
how OOM fits into this background. The final section gives the standard
itself—how to implement OOM in GAMS 2.25.
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EXTENDED ABSTRACT

{. Motivations for a formal theory.
The definition of a specific model is often conceived as a work which has to be done
from scratch. In fact, the variety of the variables describing the modelied reality scems to
exclude the possibility that a model can be defined assembling pieces of correlated sub-
models. 1o define models from scratch greatly decreases the productivity of the work.

1t seems that the keyword in increasing modelling productivity is "reusability”. Models
can be reused and integrated so to produce new models. Naturally models to be integrated
have 1o be expressed using a common base and the result has to lie on the same
framework. In this paper the chosen framework is the Structured Modeling, as formally
dafined by Geoffrion, {3].

Here we define three integration levels, according to the degree of influence of the
operator in the procedures used to merge the models:

Level 1 - All the procedures are automated. This means that the user selects the
input models and the genera to be integrated, and the output integrated

model is automatically produced.
Level 2 - The user selects the input models and the order of integration among
the genera, and the output integrated model is autornatically produced.
Level 3 - The user select the input models, the genera to be integrated and

formulate the steps necessary to integrate. The output integrated model
is not autornatically produced, since the steps can vary according to the
situation.

2. Preliminary resuits.
In the rest of this paper we assume that the reader is familiar with the formal theory of the
Structured Modeling.

Given a Structured Model M;. let G; = {gj, j = 1. ... , k} be the set of all the genera:
this can be partitioned into three disjoined sets: PC, A and FT such that:

PC ={gje G;j: gjisa primitive or a compound entity genus}

A = {gje Gj: gjis an attribute genus)

FT = {gje Gi: gjis a function or a test genus).

Lemma 1: Any genus g; € PC; does not have references to any other genera gy € (A v
FT)
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Proof: Primitive entity elements. by definition, have no calling sequence, therefore they do not have
references to any other clement: compound entity elements, by definition. are construct only on pnmittve
entity clements. a

Lemma 2: Any genus g, € A; has only references to another genera g; € PC,.

Proof: Attribute elements. by definition. characterize only pnmitve and compound elements. w

Lemma 3: Any genus g; € FT; does not have references 1o any other genera gi € PC,.

Proof: Function and test elements call. by definition, atitnbute. tunction and test clements: theretor:.
they cannot call primitive and compound ntity elements.s

Definition 1. Connected Module, Sub-Mode!.

A module is a Connected Module if its genera and their calling szquences define
connected graph. A Sub-model is a connected module with a1 least one primitive en:ir.
genus.

Definition 2: Behaviour Equivalence on FT; ¢ FT;.

Two structured models M; and M3 are Behaviour Equivalent on FT; < FT; anu
FT3 CFT; if the following two conditions hold:

a) The set A| of the auribute genera directly or indirectly called by the g, € FT, and ti:e
set A3 of the attribute genera directly or indirectly called by the g; € FT; have the sure
structure;

b) FT)and FT> give as output the same values.

We shontly write “behaviour equivalent™ when the sub-set FT, coincides with FT,.
Definition 3: Normal Model.
A model is called normal if an isomorphic relation exists between attribute and

compound genera, and their elements.

The graph of the elements of a normai model is shown in figure i: dotted rectangles
identify genera.

figure 1

Proposition L. Given a Structured Model M;, it is aiways possible to construct a
normal model N(M; ) which is behaviour equivalent 1o M;.
Proof: Let us consider a generic aunibute genus gj € A; < M. It is always possible to define a new

compound entity genus. c € PCj. with the same calling sequence of gj- Lemmas 1 and 2 ensure that
genera which are called by an attribute genus can be called by a compound entity genus too. An
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1somosphic relation can be sct among the elements of gj and ck: the first element of g; calls the first
eement of ck, eic. This process is repeated for every atribute genus of M;.

if we indicate with N(M;) the modified model, the set B = {ck. 8} < N(Mj) & gj € M; for every genus
gk € FTic N(Mj). =

Definition 4: Index Basis, Index Basis Sel.

An Index Basis of @ normal model N(M;) is a couple of genera B; = (aj, ¢;}, where a;
€ Ai C M is an attribute genus, and cjis the compound entity genus called by a;. The
4enus a; is called value component of B;, while the genus c; is called index
~omponent. The set BS; = (Bj, j:1, ..., k} containing all the index basis of N(M;} is
~clled Index Basis Sel.

Definiiion 5: Index Function.
An Index Function i(g;) is a rule which associate to every genus gj € N(M;) the
vardinality of its index ser.

Ag example, given a genus gj indexed by j x & x [, its index function i(gj) returns as value 3.

5. Main resuits.
in this caragraph we try to give an example for each level of integration previously
defined.

2.1. Level | integration example.
To show the first level of integration we need 10 introduce the definition of a function
sub-maodal.

Definition 6: Function Sub-Model.

SubM(f) is called Function Sub-model if the following properties hold:
a) SubM(f)is a normal model.

b) SubM(f) has at least a function genus fe FT; ¢ M; indexed as singleton.

in the following we give a procedure, which transforms a Stuctured Model M; with at
lzast one function genus indexed as singleton into a function sub-model.

The fellowing procedure, CREATE_FUNCTION_SUBMODEL., needs as input a
mode! M; and a singleton genus f € FT; < M;, and produce as output a functuon
sub-model. The proof of this is given in Proposition 2.

vrocedure CREATE_FUNCTION_SUBMODEL (input: M;, f: output: SubMif));
/v UYodify My into a function sub-model SubM(f) */
ragin
/* step I, °Normalize the model® */
NORMAL (M;);
/* step IX. “Merge functions” */
Create a LIST of calling sequence segments s; of f:
Tepeat
Examine the segment sj € LIST:
$f the referred genus gy € FT,
then
/*a Substitute sj with the calling seguence of gg
/* b/ Substitute the value tield of gy with its rule:
/1* ¢ */ Delete gy
Delete the segment s;;
until (end of LIST):
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/* step YIIT ‘Delete genera naving tc intiuence un = *
Create a LIST of qy € M;:
repsat
Examine ¢, € LIST:
it {gy € FT| and a, = ¢}
then delete gj:
if (g; € Aj UPC| and 3. is not cailed direccly or indirectly by f:
then delete g5y
until {there are nc more a, € FT, < M. 3, = t) apd (there dre nc more g, €
Aj UPCy € Mj nct called directiy ¢r indirecily by ¢
end

Proposition 2: Given a Structured Model M; and an arbitrary singleton function genus
fe FT; ¢ M,, it exists a transformation T such that:

T(M) = SubM(f)
and SubM(f) and M; are behaviour equivalent on f.

Proof: By applying procedure CREATE_FUNCTION_SUBMODEL which defines ine procedure T.n

Let us show how a function genus f can be reused as an input parameter for other
models. This action is totally automated. here is an example.

Suppose we have two models My and M, we want to substitute the genus gje Ay
M} with the computed value given by the genus f € FTa <« M. This goal is achieved
applying the following procedure (the symbol {[Mj, SubM1] means the integrated output
model):

procedure REUSE {input: M:, M2, 3., {; output: {My, SubM>ly;
/* Integrate My and M>. { is substituted tc g, *
begin '
/* Step I ~Thanges in M- *
CREATE_FUNCTION_SUBMODEL (M>.f; SubMsifi}:
Create a LIST of genera g, € A> € 3:ibMyf);
rapeat
Add the calling sequente's segments of g, € Ay te the calling sequence !
gi € A> C SubMatf:;
until end of LIST:
/* Step II “Changes 1n M “ =~
Create a LIST of genera g, € FT C LMy
repeat
Select gy from LIST:
1f g; calls gy € Ay
then
Substitute 93 with £ 1n the calling sequence of gj:

LIST := LIST - 34:
until end of LIST
/v step IIX "Calete attriPute genus® */

Celete g, € Ay:
end.

Proposition 3: Given two Structured Models M; and M», it is always possible 1o
substiture an attribute genus g, € A; < My with a singleion function genus f € FT- <
M> . The result is a Structured Model.

Proof: By applying the procedure REUSE we obtain as result the model {Mj. SubM3]|. lis graph of

genera must be finite. closed and acyclic.
a) Finiteness. Step 11 guaranties that the number of genera of {M;, SubMj) is equal to the number of

genera of (M) L SubMa(D)) - g;.
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b) Closure. By steps I and 11, there is at least one genus of My calling a genus of SubM3(f) and at least
coe genus of SubMa(f) calling a genus of M. From closure of My ¢ SubMa(I) it follows the closure of
[M). SubMal.

¢) Acyclizity. Let us consider an arbitrary sub-set of genera Gj ¢ [My, SubM>], and let us assume that
it is cyclic. Therefore. G, contains genera belonging  both models, because no new references are set by
the precedure among genera belonging to only one model. By construcuon. the sequence must be of the
type:

{....a€ Az c SubMy(), f, ... }.

The genus following { in the sequence has to be a function genus, while the genus preceding a; has 10 be
a compound entity genus. By Lemma 3 there are no references among funcuon genera, and compound
entity genera. Therefore, G, cannot by cyclic. s

Figure 2 shows how two models are integrated.

M SubM(f)
Figure 2

Proposition 4. Given two normal models My and M3, the integrated model obtained
supstiuting an input parameter g1 € Ay C M), with an owtput parameter gy € FT; cM>
is ¢ Structured Modei if i(g1) = i(22).

Proof: it fotlows the same line of proposition 3. The necessary condition given by the equality of the
index functions ensures the closure and acyclicity of the graph of the clements.a

Given the result of proposition 4 the following procedure can be constructed. The
input parameters are the two normal models, an index basis of the model M and a
function genus of the model M».

procedure USE (Input: N(M;), N(M3}, Bj, [, Output: {N{Mp}. N(M3)l):
begian
Select a; € Bjp:
Compute ij(aj):;
Compute i3(f);
if ij(aj) » i3(f) then exit;
Create a LIST of genera gj € FT| C N(M));
Trepeat
Select g; from LIST:
if g; has a reference tc a) then
Substitute the reference to a; with a reference to f:
LIST := LIST - gj:
uatil end of LIST:
Delete B):
end.
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The following steps create an integrated model, which is the same result as in
Geoffrion. The final graph of genera obtained applying sequentially step O - step 1V is
shown in figure 4.

Step 0. 1 . (““\
NORMAL (finy; . L1K<i\ ~
NORMAL (mkt}: ° ;

NORMAL (mar}: v

NORMAL imfgi;

Step I.

SUBSTITUTE (mk:t, mar, (P,Dl). {P,D21};
USE (mar, mxkt, (V,D3}], Vi:

Step IX.
USE (mfg, mar. [V,D5), V);
USE (mar, mfg. {E,D4), E);

Ster IXIX.

SUBSTITUTE (fin, mar, {P,D6]., (P.D2]):
USE (fin. mar, {(E,D8], E):

USE (fin, mar, (V.DS}, Vi:

B8tep 1IV.
MERGE (mfg, mar, P, U} fin mkt mar mfg

Figure 4

3.3 Level 3 integration example.

At this [evel of integration the user needs to define the sieps to integrate the models, and
there are no automated procedure. Let us present another example extracted from
Geoffrion [4]. The steps are informally defined. since the user will formalize them.

Step 1
Delete DEM and T:DEM genera from TRANS!
Delete SUP and T:SUP genera from TRANS2

e,
T De
8tep II

Merge genus CUST from TRANS] with genus
PLANT from TRANS2;

gtep III :
Create new genera T:DC and define its ﬁ;i_
. ) j
reference: / —
Step IV (Optional) ~ /

Create a new genus TOTS being the sum of
the TOTS funcrion genera cof the two

models; TRANSI TRANS2

Step V (Optiocnal) .
Rename genera: Fxgure 5

4. Conclusions.
The first remark about the definition of a formal theory to models’ integration is
modularity. This can be easily achieved projecting the theory of the Structured Modeling
into the same space of the Object Orientation Principies.

The second rernark regards the construction of three sub-sets which contain the
procedures characterizing the formal rules of the three integration levels.

Both aspects will be deeper developed in the future.
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3.2 Level 2 integration example.
In this case the role of the user is relevant, since the input parameters to be merged are
only identified by him.

Proposition 5. Given two normal models N(M,) and N(M;) and the correspondiag
index basis set BS| and BS;, the integrated model obrained substitvting in N(M;), Bje
BS}; with Bre BS» is a Structured Model.

Proof: To substitute Bj with By implies that everv genus g; € FT has to replace the reference in its
calling sequence 10 aj€ B; whit ax € Bg. The graph of genera of the integrated model has 10 be: (a)
finite; (b) closed and (c) acyclic. (a). (b} hold by construction: (¢} hok: ;v lemma 2.»

Proposition 6. Given rwo normal models N(M;) and N(M3), and the corresponding
index basis set BS; and BS3, the integrated model obtained substituting, in N(M}), an
index component ¢j € B; € BS) with an index component ¢y € By € BSy is a Structured
Model

Proof: It follows the lines of proposiuon S.e

Given the results of the proposition 5 and 6 the following procedures can be
constructed.

procedure SUBSTITUTE (Input: N{M;), N:M2). &;, B2:
Cutput: [NiM3), NiM2i]);
begin
Create a LIST c¢f genera gi € FT| C M]:
repeat
Select gj from LIST
Substitute A} € By with Ay € By in the calliing sequence of g;;
LIST := LIST - gj:
until end or LI3T:
Delete B):
end.
procedurs MERGE fInput: N{Mp). N(Mar., By. Ba:
—utput: {eMpy, Mot
begin

Select ¢, a) € By, c) € Bjr:
Substaitute c] with ¢ in the calling sequence of ay;
end.
In the next we treat the core example extracted from Geoffrion [4]. The sub-models to
be integrated are shown in figure 3 (the detaiis are omitted):

=
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EXTENDED ABSTRACT

!, Introduction

As pointed out by many authors, a Model Management System (MMS) provides for
creation, storage, manipulation, and access to models. MMS functions can be divided in
two main groups: Model storage functions and Model manipulation functions. The
former includes Model Building. Model Representation. physical and logical Model
Storage and Model Retricvai, the latter includes Model Instantiation, Interface with
Databases, Model Maintenance, Links between model and Algorithms, and Model
Solving.

Model representation schemes plays a key role in the implementation of effective
MMSs. To fully implement the functions of MMSs, we need to state a rigorous
conceptual framework with a single model representation leading to:

i+ indegendence of model representation and model solution,
2) represcniational independence of general model structure and detailed data
aeeded to describe specific model instances.

A svstem based on these ideas would show its usefulness for most phases of the
life-cvcle associated with model-based work (Geoffrion 1987). For example, consider a
mathematical programming problem. Once a2 model of this problem has been
consiucted, 2 MMS should allow the user to perform the following steps:

1) select tie solution technique (if any),
2} solve the model,
3) conduce sensitivity analysis.

To autemate steps 1 and 2, the system has to be able:

a) to recognize what kind of model arises (so that it could automatically select
the appropriate solver);

b) to transiate data instantiating the model (querying the Database where they
are stored) into the format required by the sclected solver.

This paper will focus on the model recognition phase. We will try to give tits
theoretical foundations and to define which conditions a model definition language has
to satisfy so that the resulting representation is ‘recognizable’™.

Qur formalization of the recognition process is based on the concept of “‘minimal
representation”. A representation of a model is minimal if any other equivalent
representation of the same model can be “reduced” to it.
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2. Model Recognition Problem: Preliminary Resuits.

The aim of this secton is to provide for some formal definiticns. In the next, we wiii
use them to illustrate how recognition process can be carried out.

The recognition process we are ‘trying to formalize s~ based on the concept of
minimal representation. A representation of a mode! is minimal 1f any other equivalen.
representation of the same model can be reduced to :t.

in the rest of this paper we will define and exp:ain mnimality, equivalence an!
reduction of model representations; first we need to derine wrat we intend for * mode!’
and “model representation’”.

Definition 1
We define the system M i be a moded of the system P if.
— M does not interact neither directly nor indirectly with P
— M is used to obtain nformation about P
— M comprises afl the elements of P relevant for the intended purpose of the model.

Definition 2
Given a formal language L and a model M, we define L(M| o be its iormal representation uncer L,
if t comprises the expression in language L of ali the elements of M, and of the nteractions exising
among them.

In the following we will use the terms “model representation” or simply
“representation” to indicate the “formal™ representation of a given model under some
formal language.

Let us consider, as an example, model M; as the model of the system P thai computes
the mean of a given series of values belonging to P: if L is the standard algebrii-
notation, then L(M;) will be:

mean = — 1]

If L(M,) exists and is unique, then the recognition problem has a trivial solution.
because there is a 1:1 correspondence between model and its representation.
Unfortunately, except for very few cases, the model M; has many representations
LMy, j=1, .... n, n>1. Referring to the previous example. two other ways to represent
the same model are the following ones:




XIv

Model Recognition: Extended abstract

e

3

i
™M

x
[\/]~

W
p—
L
)
N -

(2] result =

(3]

It is intuitive that all previous representations are equivalent, in so far as they “do the
same thing”. Nevertheless, for our purposes we need a more rigorous definition of
equivalence based on the concept of “ransformation rule”.

Ve can think 19 a runstormation rule as 1o a runcuon or procedure whose input is
the whoie modsi representation or a part of it. and whose output is a new model
repressniation or & part or it. Cbvicusly, the cutput of a transformation rule must be
semanticaily consistent with its input. Let us give its formal definiuon:

Definition 3
Corsider 2 formal language L and two distinct sets €, ang E, of expressans of L semantically
identical. Let R be the set of all transtormation rutes dehned on L; 7 € R is defined fo be a
transformation ule on L ¢ appled to E, transforms tinto €,

The ¢xistence of transformation ruies is very important ic state formally the
equivalence of model representations. Two equivalent representations must be
semaniically identical: in other words, there exist two (sets of) transformation rules that
transform one into thie other, and viceversa. We can formalize the equivalence between
model representations as follows:

Definition 4
Let S = [ L{M):)=1, ..., n:in>1] be the set of all possible representation of M. in the language L. Two
representations L{M). Ly(M) € Si. j=k, are defined to be equivalent if there are two sets of
transtormation ruies, Ry and Ry, defined on L such that Ry applied o L;MJ ransform it nto Li{M),
and Ry applied 1o Ly(M) transform it into L{M). If Ry = Ry then the two representations are defined
Identical. Obviously, identical representations are aiso equivaient.

As an example, let us consider two transformaunon rules, called split and join suitable
to be applied to representations (1] and (2]. The terms LHS and RHS stand for
respectively “left hand side” and “right hand side™.

transformation split
input
in_iraction type fraction
output
oul_assignment type ass;znmnent siatemant
cut_fracuor type fraction
begin
set RHS of in_assigninent to numeratwr of in_fracton
set numerator of out_fracuon to LHS of out _assignment
set denominator of out_fraction {0 denominator of in_fraction
end
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transformation yin
input
in_sssignment type assignment siatement
1 _fracuon type fraction
output
out_fraction type fraction
begin
if LHS of in_assignment = numera‘or of in_fraction then
exit yoin

set numerator of out_fracuon to RHS of 1n_assignment
set denominator of out_fracuion to denominator of in_fraction
end

The rule split performs the following operations: given a fraction. it reads its
numerator and assigns it to an intermer 'iate vanable, and ... i builds another fracuon
whose numerator and denominator are respectively the intermediate vanable and the
denominator of the given fraction.

The rule join acts as follows: given an assignment statement and a fracuon whose
numerator is the varable on the left hand side of the assignment statement, it builds a
new fraction whose numerator and denominator are respecuvely the nght hand side of
the assignment statement, and the denomnator of the of the given fraction.

Since we can transform representauon (1) into representation {2} and vice versa by
applying respectively transformation rules splir and join, they are equivalent in the
sense expressed in Definiton 3. They are not idenucal, since wanstormauon rules we
need to apply are different.

Let us now consider a third rule, calied rename. which reanames all the elernents of a
model definition, or a part of them, subiect 1o the simple constratnt that ail elements
with identical name in the input model representatior must have idenucal name in the
output one. Model representation {3} is one of the possible results of applving rule
rename 1o {1]. Since transformaton ruie we aced 1o apply 1o transform representation
{1] into representation [ 3] and vice versa is the same, thev are identical,

3. Model Recognition Problem: Basic Ideas.

As asserted in first section of this paper, our main task is to determine which
conditions have to be satisfied so that the recognition of a mode! can be performed. For
this purpose, we state that the language L must allow that the set of model
representations it produces can be ordered by rank. The rank is a measure, defined on
some measurable aspect of L, which allows 1o class and order model representations.
We formalize that as follows:

Definition §
Aformai language L satisfies the property of rankability if
— ali model representations L{M) € S, are equivalent,
— alt model representations L{M} € S; can be ranked
— §y_can be partiioned by rank and all the efements in the same cell of the partition are
igentical.

In previous examples we might consider the number of equations as rank. If so. then
representation [1] and [3] are of rank | while representation {2} is of rank 2. Since ail
representations are equivalent, and representations {1] and [3] are 1denucal, then the
property of rankability holds.

Now, let us explain how recognition process can be carried on. To recognize a model
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representation means that we have to determine the model it represents. The basic idea
of this process is to transform the representation to recognize into another one that we
know the kind of model it represents. So doing, we have “recognized” the model.

If the representation we" deal with are expressed in a language L satsfying
rankability, then all representations of the same model are equivalent. So, if we know
all transformation rules that language L allows, then we can recognize anv
representation simply transforming it into the known one by applying to it the
appropriaie transformation rules.

The set of all ransformation rules may be incredibly large or even not finite. This
fact can influence the efficiency of the recognition process. The recognition process can
be carried out more efficiendy if it is based on the ideas of “minimal representation”
and of “reduction ruie” defined as follow:

Detinition 6
A mocel representation LiM) is cefined 1o be minimat if:
— L satisfies the property of rankabxiity;
— it has the lowest possible rank.
Definition 7

Given a language L satisfying rankability, reduction rules are defined to be transformation rules
which when applied to a mode! representation L (M) € S, of rank k produce a model representaton
LiM) e Sy ofrank j<k.

Referring to previous example, we can consider representations {1} and (2] as
minimal ones.

Property of rankability plays a crucial role for our purposes: in fact, if L sausfies
rankability, all reduction rules are known, and they form a finite set then:

— it always admit a minimal representation (i.e. a representation which has the
lowest possible rank, and to which any other representation of the same model
can be reduced);

— any model representation in language L can be reduced in its minimail form
(by applying to it the appropriate reduction rule until no more rule can be
applied);

~— all minimal representations of the same model are identical.

Under the above mentioned condition, the recognition process of a given model
representation can be based on the minimal representation by performing the following
basic steps:

1) reduce the model representation to recognize to its minimal form;
2) search among the “known™ minimal model representation for a template
matching the minimal representation obtained by step 1.

Since for any given language L, the set of the reduction rules must necessarily be a
subset of the set of the transformation rules, the recognition process of a given model
based on the minimal representation is more efficient than the previous one.

Now, we can define formally the condition under which a given model definition
ianguage generates “‘recognizable’ model representations:




Xvi

Model Recognition: Extended abstract

Definition 8
A model representation is defined o be recognizable if the recogrition process:
~- £an be based on its minimal representaton
— can be performed in a finite numper of steps.

Claim 1
A formal model definition ianguage L generates «recognizabie» modei representations if:
— it satisfies the property of rankability,
— the set of aff reduction rules it admits is finite.

Proof:
It L satisfies property of rankability then it always admit a minimal representation. if the set of the
reduction rules s tinite any madel representation can be reduced to 11s minimal form in & finite
number of steps. in this way both the conditions wiuch state the recogrizabitity of 2@ model
representation are sabsfied.

3. Conclusions

Here we have sketched the fundamental lines to “recognize™” models representation.
It seems to us that the idea of minimality looks very promising to be further
investigated.
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Extended Abstract

This paper describes a simple methodology for reasoning about temporal
and precedence constraint satisfiability problems arising in job scheduling. In

particular, a Constraint Satisfaction Problem (CSP) approach is presented.

Several researchers, coming both from Artificial Intelligence (Al) and
Operations Research (OR) have investigated methods for dealing efficiently
with time (see, e.g., [2, 3, 7, 12]); however, at least to the author’s knowledge,
only very few real and large scale scheduling applications have been

approached using this relatively new technique [4].

In this paper, among all the job scheduling problems, an application in
which a set V of n jobs has to be processed on a single machine is considered,
such that a release date ri, a deadline d; and a process time pi are associated
with each job i € V. The problem is formulated on a constraint network, i.e.,
a digraph G = (V,A) of n nodes (jobs). An arc (i,j) € A means that job j can
be processed immediately after job i. A weight pj and the attributes rj and d;
for each node j € V are given. Moreover, a digraph P = (V,E), withEC A,

is given such that an arc (i,j) € E represents a precedence constraint between
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jobs i and j. The problem consists of determining the starting time for
processing the jobs in V such that the time windows (defined by rj and d;) for
scheduling the execution of each node (job) is satisfied and the precedence
constraints between nodes given by the relationships defined in arc set E are

satisfied within a time horizon (production plan).

Based on the Allen’s model for temporal logic [1], a CSP formulation is
first presented. A CSP consists of a set of variables X = {xi, x2, ..., Xa }, their
associated domains D1, Dz, ..., Da and a set C of constraints on these variables.
A solution to a CSP consists of an instantiation of all the variables which does
not violate any of the constraints. In the case of the application considered in
this paper, let X be the set of variables such that xi represents the starting time
for processing job i, Vi € V. A domain Di is associated with each variable xi
such that D; = { set of available Time Machine Units (TMUs) for processing
job i (production plan) }. The set C of constraints is defined by two classes of
constraints, namely C1and Cz, such thatC = C1 U C2, C1 = { unary constraints
(timeinterval) } = {riVi€EV} U {diVi€V }and C2 = { binary constraints
(precedences) } = { (ij) € E }. The problem is to verify whether an
instantiation of all the variables is possible such that all the jobs are completed

within their time interval and no precedence relationship is violated.

Starting from the Allen’s interval algebra, the temporal relations are
specified by atomic relations. In particular, for each pair i,j of jobs the following

atomic relations are defined:

— After(j,i): this specifies the precedence relationship betweeniand j, i.e.,
(ij) € E;

—~  Available(i,ri,Di): this specifies the release date of job i within the
production plan;
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~  Due(1,di,Dj): this specifies the deadline of job i within the production
plan.

The constraint network G of this problem is then "preprocessed” such that
to compute the tightest possible bound for both unary and binary constraints
on the jobs. In particular, given the explicit precedence relationships between
jobs the possibility of inferring additional implicit precedence relationships are
explored; for instance, the transitivity of the predicate After(j,i) may allow to

infer information such that
—  After(j,k) N After(k,i) = After(j,i) .

Moreover, the availability interval of each job within the production plan
is computed by considering its release date, deadline and precedence
relationships. The new domain Dy’ for each jobiin V is hence computed such

that the predicate

- Dy = Interval(i,ri,di) = Di N Available(i,ri,Di) N Due(i,d;,D;)

returns the restricted time interval in which each job has to be processed
in order to obtain a feasible scheduling of the jobs. Note that all the possible
instantiations of the corresponding variables are thus noticeably reduced after

the computation of D", Vi€ V.

It is worth mentioning that such a preprocessing approach allows for
further generalization of the proposed scheduling problem; for instance, it
could be necessary to take into account a possible decomposition of the jobs
into different subtasks {13], to analyze periodic scheduling problems [9] or to
consider setup times between jobs [5].
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A Prolog-like algorithm is then presented for finding a consisten:
assignment for the variables, i.e., an instantiation of all the variables which does
not violate any of the constraints given by both C1 and C2. In particular, the

procedure
- xi = Assign(i,Di)

associates a value in the new domain Dy’ with the corresponding variable

xi, such that a feasible starting time for processing job 1 is given.

In this phase, following the most-constrained approach suggested in {12},

the job having the tightest constraints is selected first. In particular, the

procedure

- Preorder(X)

performs a sort of the set of variables in such a way that the most critical

job, i.e., the most constrained job, is chosen first for its instantiation.

In this particular application the most constrained path is proven to be the
most efficient implementative approach, in the sense that the number of
backtrackings is minimized (see, e.g., [6, 7] for an overview of the complexity

of this kind of temporal CSP problem).

Note that a different way for finding a feasible instantiation of all the
variables is to look for an initial solution, possibly inconsistent, and then
incrementally repair constraint violations until a consistent assignment is
achieved. Such an approach is proposed in [10] in the case of scheduling

problems without precedence and time window constraints.
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The application field and computational experiences related to real-life
cases are also given in the full paper. Some conclusions along with a
comparison with a more traditional mathematical programming approach (see,
e.g. [S, 8]) for solving the scheduling problem under consideration are finally

derived.
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